339 research outputs found

    Raising calves on farms where whole milk is sold

    Get PDF
    Caption title.Digitized 2006 AES MoU.Includes bibliographical references

    Some factors influencing the rate of growth and the size of dairy heifers at maturity

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (page 56)

    Impacts of 40 Years of the Gudmundsen Sandhills Laboratory on Beef Cattle and Range Systems

    Get PDF
    The University of Nebraska (UNL) Gudmundsen Sandhills Laboratory (GSL) is a 12,800-acre research ranch in the Nebraska Sandhills. In 1978, Elmer “Pete” and Abbie Gudmundsen gifted the former Rafter C Ranch to the University of Nebraska Foundation. Thus, 2018 was the 40th year of UNL oversight of GSL. To the credit of UNL Administration, GSL development for range livestock research was delegated to a team of Research and Extension Specialists chaired by Dr. Don Clanton. Other members of that original team were Jim Nichols, Range Science; Gene Deutscher, Reproductive Physiologist; Dick Clark, Agricultural Economist; and Ivan Rush, Beef Extension Specialist. This team configured the ranch to investigate production and management questions pertinent to the region

    Increase your calf crop by good management, pregnancy testing, and breeding soundness examination of bulls

    Get PDF
    "Manage the cow herd for a 95 percent calf crop. In herds with a 450-pound weaning weight and 95 percent calf crop, you have 428 pounds of calf per cow in the herd to sell. In contrast, an 85 percent calf crop yields only 383 pounds of calf per cow-or 45 pounds less per cow. See Table 1. A beef cow's critical need for good nutrition for reproduction is 60 days before and 90 days after calving. When you feed cows for maximum reproduction efficiency, their nutritional needs for production will be adequate."--First page.John W. Massey and Jack C. Whittier (Animal Science Department, College of Agriculture) C.J. Bierschwal (School of Veterinary Medicine)Revised 3/87/6

    The minimum protein requirement for growing dairy hiefers

    Get PDF
    Publication authorized January 10, 1924.Digitized 2007 AES.Includes bibliographical references (pages 154-155)

    Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program

    Get PDF
    Citation: Hill, S. L., Grieger, D. M., Olson, K. C., Jaeger, J. R., Dahlen, C. R., Bridges, G. A., . . . Stevenson, J. S. (2016). Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program. Journal of Animal Science, 94(9), 3703-3710. doi:10.2527/jas2016-0469A multilocation study examined pregnancy risk (PR) after delaying AI in suckled beef cows from 60 to 75 h when estrus had not been detected by 60 h in response to a 7-d CO-Synch + progesterone insert (CIDR) timed AI (TAI) program (d-7: CIDR insert concurrent with an injection of GnRH; d 0: PGF(2 alpha) injection and removal of CIDR insert; and GnRH injection at TAI [ 60 or 75 h after CIDR removal]). A total of 1,611 suckled beef cows at 15 locations in 9 states (CO, IL, KS, MN, MS, MT, ND, SD, and VA) were enrolled. Before applying the fixed-time AI program, BCS was assessed, and blood samples were collected. Estrus was defined to have occurred when an estrus detection patch was >50% colored (activated). Pregnancy was determined 35 d after AI via transrectal ultrasound. Cows (n = 746) detected in estrus by 60 h (46.3%) after CIDR removal were inseminated and treated with GnRH at AI (Control). Remaining nonestrous cows were allocated within location to 3 treatments on the basis of parity and days postpartum: 1) GnRH injection and AI at 60 h (early-early = EE; n = 292), 2) GnRH injection at 60 h and AI at 75 h (early-delayed = ED; n = 282), or 3) GnRH injection and AI at 75 h (delayed-delayed = DD; n = 291). Control cows had a greater (P < 0.01) PR (64.2%) than other treatments (EE = 41.7%, ED = 52.8%, DD = 50.0%). Use of estrus detection patches to delay AI in cows not in estrus by 60 h after CIDR insert removal (ED and DD treatments) increased (P < 0.05) PR to TAI when compared with cows in the EE treatment. More (P < 0.001) cows that showed estrus by 60 h conceived to AI at 60 h than those not showing estrus (64.2% vs. 48.1%). Approximately half (49.2%) of the cows not in estrus by 60 h had activated patches by 75 h, resulting in a greater (P < 0.05) PR than their nonestrous herd mates in the EE (46.1% vs. 34.5%), ED (64.2% vs. 39.2%), and DD (64.8% vs. 31.5%) treatments, respectively. Overall, cows showing estrus by 75 h (72.7%) had greater (P < 0.001) PR to AI (61.3% vs. 37.9%) than cows not showing estrus. Use of estrus detection patches to allow for a delayed AI in cows not in estrus by 60 h after removal of the CIDR insert improved PR to TAI by optimizing the timing of the AI in those cows

    De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (<it>Pteridium aquilinum</it>) to develop genomic resources for evolutionary studies.</p> <p>Results</p> <p>681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled <it>de novo </it>into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of <it>Arabidopsis</it>, <it>Selaginella </it>and <it>Physcomitrella</it>, and identified a substantial number of potentially novel fern genes. By comparing the list of <it>Arabidopsis </it>genes identified by blast with a list of gametophyte-specific <it>Arabidopsis </it>genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.</p> <p>Conclusions</p> <p>This study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for <it>de novo </it>transcriptome characterization and gene discovery in a non-model plant.</p

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication
    • 

    corecore