107 research outputs found

    Live imaging of DORNRÖSCHEN and DORNRÖSCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions

    Get PDF
    Key message Transgenic DRN::erGFP and DRNL::erGFP reporters access the window from explanting Arabidopsis embryos to callus formation and provide evidence for the acquisition of shoot meristem cell fates at the microcalli surface. Abstract The DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL) genes encode AP2-type transcription factors, which are activated shortly after fertilisation in the zygotic Arabidopsis embryo. We have monitored established transgenic DRN::erGFP and DRNL::erGFP reporter lines using live imaging, for expression in embryonic suspension cultures and our data show that transgenic fluorophore markers are suitable to resolve dynamic changes of cellular identity at the surface of microcalli and enable fluorescence-activated cell sorting. Although DRN::erGFP and DRNL::erGFP are both activated in surface cells, their promoter activity marks different cell identities based on real-time PCR experiments and whole transcriptome microarray data. These transcriptome analyses provide no evidence for the maintenance of embryogenic identity under callus-inducing high-auxin tissue culture conditions but are compatible with the acquisition of shoot meristem cell fates at the surface of suspension calli

    Characterisation of proteins in excretory/secretory products collected from salmon lice, Lepeophtheirus salmonis

    Get PDF
    Background  The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic copepod which feeds on the mucus, skin and blood of salmonid fish species. The parasite can persist on the surface of the fish without any effective control being exerted by the host immune system. Other ectoparasitic invertebrates produce compounds in their saliva, excretions and/or secretions which modulate the host immune responses allowing them to remain on or in the host during development. Similarly, compounds are produced in secretions of L. salmonis which are thought to be responsible for immunomodulation of the host responses as well as other aspects of crucial host-parasite interactions.  Methods  In this study we have identified and characterised the proteins in the excretory/secretory (E/S) products of L. salmonis using LC-ESI-MS/MS.  Results  In total 187 individual proteins were identified in the E/S collected from adult lice and pre-adult sea lice. Fifty-three proteins, including 13 serine-type endopeptidases, 1 peroxidase and 5 vitellogenin-like proteins were common to both adult and pre-adult E/S products. One hundred and seven proteins were identified in the adult E/S but not in the pre-adult E/S and these included serine and cysteine-type endopeptidases, vitellogenins, sphingomyelinase and calreticulin. A total of 27 proteins were identified in pre-adult E/S products but not in adult E/S.  Conclusions  The assigned functions of these E/S products and the potential roles they play in host-parasite interaction is discussed

    Dynamically Integrating Knowledge in Teams: Transforming Resources into Performance

    Get PDF
    In knowledge-based environments, teams must develop a systematic approach to integrating knowledge resources throughout the course of projects in order to perform effectively. Yet, many teams fail to do so. Drawing on the resource-based view of the firm, we examine how teams can develop a knowledge-integration capability to dynamically integrate members‘ resources into higher performance. We distinguish among three sets of resources: relational, experiential, and structural, and propose that they differentially influence a team‘s knowledge-integration capability. We test our theoretical framework using data on knowledge workers in professional services, and discuss implications for research and practice

    A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development

    No full text
    Key message Arabidopsis ETHYLENE RESPONSE FACTOR12 (ERF12), the rice MULTIFLORET SPIKELET1 orthologue pleiotropically affects meristem identity, floral phyllotaxy and organ initiation and is conserved among angiosperms. Reproductive development necessitates the coordinated regulation of meristem identity and maturation and lateral organ initiation via positive and negative regulators and network integrators. We have identified ETHYLENE RESPONSE FACTOR12 (ERF12) as the Arabidopsis orthologue of MULTIFLORET SPIKELET1 (MFS1) in rice. Loss of ERF12 function pleiotropically affects reproductive development, including defective floral phyllotaxy and increased floral organ merosity, especially supernumerary sepals, at incomplete penetrance in the first-formed flowers. Wildtype floral organ number in early formed flowers is labile, demonstrating that floral meristem maturation involves the stabilisation of positional information for organogenesis, as well as appropriate identity. A subset of erf12 phenotypes partly defines a narrow developmental time window, suggesting that ERF12 functions heterochronically to fine-tune stochastic variation in wild type floral number and similar to MFS1, promotes meristem identity. ERF12 expression encircles incipient floral primordia in the inflorescence meristem periphery and is strong throughout the floral meristem and intersepal regions. ERF12 is a putative transcriptional repressor and genetically opposes the function of its relatives DORNRoSCHEN, DORNRoSCHEN-LIKE and PUCHI and converges with the APETALA2 pathway. Phylogenetic analysis suggests that ERF12 is conserved among all eudicots and appeared in angiosperm evolution concomitant with the generation of floral diversity

    Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation

    No full text
    In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNROSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation

    DORNROSCHEN, DORNROSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis

    No full text
    The biphasic floral transition in Arabidopsis thaliana involves many redundant intersecting regulatory networks. The related AP2 transcription factors DORNROSCHEN (DRN), DORNROSCHEN-LIKE (DRNL), and PUCHI individually execute well-characterized functions in diverse developmental contexts, including floral development. Here, we show that their combined loss of function leads to synergistic floral phenotypes, including reduced floral merosity in all whorls, which reflects redundant functions of all three genes in organ initiation rather than outgrowth. Additional loss of BLADE-ON-PETIOLE1 (BOP1) and BOP2 functions results in the complete conversion of floral meristems into secondary inflorescence shoots, demonstrating that all five genes define an essential regulatory network for establishing floral meristem identity, and we show that their functions converge to regulate LEAFY expression. Thus, despite their largely discrete spatiotemporal expression domains in the inflorescence meristem and early floral meristem, PUCHI, DRN, and DRNL interdependently contribute to cellular fate decisions. Auxin might represent one potential non-cell-autonomous mediator of their gene functions, because PUCHI, DRN, and DRNL all interact with auxin transport and biosynthesis pathways

    Grundsätzliches zur chemischen Auslese bei der Sojazüchtung

    No full text
    corecore