111 research outputs found

    "Mental Rotation" by Optimizing Transforming Distance

    Full text link
    The human visual system is able to recognize objects despite transformations that can drastically alter their appearance. To this end, much effort has been devoted to the invariance properties of recognition systems. Invariance can be engineered (e.g. convolutional nets), or learned from data explicitly (e.g. temporal coherence) or implicitly (e.g. by data augmentation). One idea that has not, to date, been explored is the integration of latent variables which permit a search over a learned space of transformations. Motivated by evidence that people mentally simulate transformations in space while comparing examples, so-called "mental rotation", we propose a transforming distance. Here, a trained relational model actively transforms pairs of examples so that they are maximally similar in some feature space yet respect the learned transformational constraints. We apply our method to nearest-neighbour problems on the Toronto Face Database and NORB

    Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line

    Get PDF
    © 2018 The Author(s). Background: Disulfiram (DS), an antialcoholism medicine, demonstrated strong anticancer activity in the laboratory but did not show promising results in clinical trials. The anticancer activity of DS is copper dependent. The reaction of DS and copper generates reactive oxygen species (ROS). After oral administration in the clinic, DS is enriched and quickly metabolised in the liver. The associated change of chemical structure may make the metabolites of DS lose its copper-chelating ability and disable their anticancer activity. The anticancer chemical structure of DS is still largely unknown. Elucidation of the relationship between the key chemical structure of DS and its anticancer activity will enable us to modify DS and speed its translation into cancer therapeutics. Methods: The cytotoxicity, extracellular ROS activity, apoptotic effect of DS, DDC and their analogues on cancer cells and cancer stem cells were examined in vitro by MTT assay, western blot, extracellular ROS assay and sphere-reforming assay. Results: Intact thiol groups are essential for the in vitro cytotoxicity of DS. S-methylated diethyldithiocarbamate (S-Me-DDC), one of the major metabolites of DS in liver, completely lost its in vitro anticancer activity. In vitro cytotoxicity of DS was also abolished when its thiuram structure was destroyed. In contrast, modification of the ethyl groups in DS had no significant influence on its anticancer activity. Conclusions: The thiol groups and thiuram structure are indispensable for the anticancer activity of DS. The liver enrichment and metabolism may be the major obstruction for application of DS in cancer treatment. A delivery system to protect the thiol groups and development of novel soluble copper-DDC compound may pave the path for translation of DS into cancer therapeutics.This work was supported by grant from British Lung Foundation (RG14–8) and Innovate UK (104022).Published versio

    Interleukin 21 inhibits cancer-mediated FOXP3 induction in naïve human CD4 T cells

    Get PDF
    IL-21 is known to promote anti-tumour immunity due to its ability to promote T cell responses and counteract Treg-mediated suppression. It has also been shown to limit Treg frequencies during tumour-antigen stimulations. However, whether this represents inhibition of FOXP3 induction in naïve CD4 T cells or curtailed expansion of natural Treg remains unclear. Moreover, whether this effect is maintained in an environment of tumour-derived immunosuppressive factors is not known. Here, we show that in the context of a number of cancers, naïve CD45RA+ CD4 T cells are induced to express high levels of FOXP3, and that FOXP3 expression correlates with inhibition of T cell proliferation. FOXP3 expression was most potently induced by tumours secreting higher levels of total and active TGFβ1 and this induction could be potently counteracted with IL-21, restoring T cell proliferation. We conclude that Treg induction in naïve T cells is a common phenomenon amongst a number of different cancers and that the ability of IL-21 to counteract this effect is further evidence of its promise in cancer therapy

    Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo

    Get PDF
    Breast cancer stem cells (BCSCs) are pan-resistant to different anticancer agents and responsible for cancer relapse. Disulfiram (DS), an antialcoholism drug, targets CSCs and reverses pan-chemoresistance. The anticancer application of DS is limited by its very short half-life in the bloodstream. This prompted us to develop a liposomeencapsulated DS (Lipo-DS) and examine its anticancer effect and mechanisms in vitro and in vivo. The relationship between hypoxia and CSCs was examined by in vitro comparison of BC cells cultured in spheroid and hypoxic conditions. To determine the importance of NFκB activation in bridging hypoxia and CSC-related pan-resistance, the CSC characters and drug sensitivity in BC cell lines were observed in NFκB p65 transfected cell lines. The effect of Lipo-DS on the NFκB pathway, CSCs and chemosensitivity was investigated in vitro and in vivo. The spheroid cultured BC cells manifested CSC characteristics and pan-resistance to anticancer drugs. This was related to the hypoxic condition in the spheres. Hypoxia induced activation of NFκB and chemoresistance. Transfection of BC cells with NFκB p65 also induced CSC characters and pan-resistance. Lipo-DS blocked NFκB activation and specifically targeted CSCs in vitro. Lipo-DS also targeted the CSC population in vivo and showed very strong anticancer efficacy. Mice tolerated the treatment very well and no significant in vivo nonspecific toxicity was observed. Hypoxia induced NFκB activation is responsible for stemness and chemoresistance in BCSCs. Lipo-DS targets NFκB pathway and CSCs. Further study may translate DS into cancer therapeutics

    Antimicrobial and antioxidant properties of methanol extract, fractions and compounds from the stem bark of Entada abyssinica Stend ex A. Satabie

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the antimicrobial and antioxidant activities of the methanol extract, fractions and isolated compounds from <it>Entada abyssinica </it>stem bark, plant used traditionally against gastrointestinal infections.</p> <p>Methods</p> <p>The methanol extract of <it>E. abyssinica </it>stem bark was pre-dissolved in a mixture of methanol and water, and then partitioned between <it>n</it>-hexane, ethyl acetate and <it>n</it>-butanol. The ethyl acetate portion was fractionated by column chromatography and the structures of isolated compounds elucidated by analysis of spectroscopic data and comparison with literature data. Antimicrobial activity was assayed by broth microdilution techniques on bacteria and yeasts. The antioxidant activity was determined by DPPH radical scavenging method.</p> <p>Results</p> <p>Four known compounds [(5<it>S</it>,6<it>R</it>,8a<it>R</it>)-5-(carboxymethyl)-3,4,4a,5,6,7,8,8a-octahydro-5,6,8a-trimethylnaphthalenecarboxylic acid (<b>1</b>), methyl 3,4,5-trihydroxybenzoate (<b>2</b>), benzene-1,2,3-triol (<b>3</b>) and 2,3-dihydroxypropyltriacontanoate (<b>4</b>)] were isolated. Compared to the methanol extract, fractionation increased the antibacterial activities of the <it>n</it>-hexane and ethyl acetate fractions, while the antifungal activities increased in ethyl acetate, <it>n</it>-butanol and aqueous residue fractions. The isolated compounds were generally more active on bacteria (9.7 to 156.2 μg/ml) than yeasts (78.1 to 312.5 μg/ml). Apart from compound <b>1</b>, the three others displayed DPPH<sup>· </sup>scavenging activity (RSa), with RSa<sub>50 </sub>values of 1.45 and 1.60 μg/ml.</p> <p>Conclusion</p> <p>The results obtained from this study support the ethnomedicinal use of <it>E. abyssinica </it>in the treatment of gastrointestinal infections and the isolated compounds could be useful in the standardisation of antimicrobial phytomedicine from this plant.</p

    Intrathecal decompression versus epidural decompression in the treatment of severe spinal cord injury in rat model: a randomized, controlled preclinical research

    Full text link
    Abstract Background In the setting of severe spinal cord injury (SCI), there is no markedly efficacious clinical therapeutic regimen to improve neurological function. After epidural decompression, as is shown in animal models, the swollen cord against non-elastic dura and elevation of intrathecal pressure may be the main causes of aggravated neurologic function. We performed an intrathecal decompression by longitudinal durotomy to evaluate the neuroprotective effect after severe SCI by comparing with epidural decompression. Methods Eighty-four adult male Sprague-Dawley rats were assigned to three groups: sham group (group S), epidural decompression (group C), and intrathecal decompression group (group D). A weight-drop model was performed at T9. The Basso-Beattie-Bresnahan (BBB) score was used to evaluate neurological function. Animals were sacrificed at corresponding time points, and we performed pathohistological examinations including HE staining and immunohistochemical staining (IHC) of glial fibrillary acidic protein (GFAP), neurocan, and ED1 at the epicenter of injured cords. Finally, the lesions were quantitatively analyzed by SPSS 22.0. Results The mortality rates were, respectively, 5.55 % (2/36) and 13.9 % (5/36) in groups C and D, and there was no significant difference between groups C and D (P = 0.214). Compared with epidural decompression, intrathecal decompression could obviously improve BBB scores after SCI. HE staining indicated that more white matter was spared, and fewer vacuoles and less axon degradation were observed. The expression peak of GFAP, neurocan, and ED1 occurred at an earlier time and was down-regulated in group D compared to group C. Conclusions Our findings based on rat SCI model suggest that intrathecal decompression by longitudinal durotomy can prompt recovery of neurological function, and this neuroprotective mechanism may be related to the down-regulation of GFAP, neurocan, and ED1.http://deepblue.lib.umich.edu/bitstream/2027.42/134548/1/13018_2016_Article_369.pd
    • …
    corecore