1,074 research outputs found

    Bakamjian-Thomas mass operator for the few-nucleon system from chiral dynamics

    Get PDF
    We present an exploratory study consisting in the formulation of a relativistic quantum mechanics to describe the few-nucleon system at low energy, starting from the quantum field theoretical chiral Lagrangian involving pions and nucleons. To this aim we construct a Bakamjian-Thomas mass operator and perform a truncation of the Fock space which respects at each stage the relativistic covariance. Such truncation is justified, at sufficiently low energy, in the framework of a systematic chiral expansion. As an illustration we discuss the bound state observables and low-energy phaseshifts of the nucleon-nucleon and pion-nucleon scattering at the leading order of our scheme.Comment: 17 pages, 10 figures. Revised formulation, matches the journal versio

    Fermionic bound states in Minkowski-space: Light-cone singularities and structure

    Full text link
    The Bethe-Salpeter equation for two-body bound system with spin 1/21/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one i) to deal with end-point singularities one meets and ii) to find stable results, up to strongly relativistic regimes, that settles in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0+0^+ state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 00^- state, taking both constituent-fermion and exchanged boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom.Comment: 22 pages, 7 figures, bst file include

    The importance of few-nucleon physics at low energy

    Full text link
    This manuscript originated from the discussion at the workshop on the "Future of Few-body Low Energy Experimental Physics" (FFLEEP), which was held at the University of Trento on December 4-7, 2002 and has been written in its present form on March 19, 2003. It illustrates a selection of theoretical advancements in the nuclear few-body problem, including two- and many-nucleon interactions, the three-nucleon bound and scattering system, the four-body problem, the A-body (A>>4) problem, and fields of related interest, such as reactions of astrophysical interest and few-neutron systems. Particular attention is called to the contradictory situation one experiences in this field: while theory is currently advancing and has the potential to inspire new experiments, the experimental activity is nevertheless rapidly phasing out. If such a trend will continue, advancements in this area will become critically difficult.Comment: 29 pages, 21 figures. Manuscript originated from the discussion at the workshop on the "Future of Few-body Low Energy Experimental Physics" (FFLEEP), University of Trento, December 4-7, 2002, written in its present form on March 19, 2003, circulated mainly among the participants to the FFLEEP workshop. Since the authors have been repeatedly solicited to make the manuscript accessible to a larger audience potentially interested in its scientific content, they have decided to post it on this archiv

    Realistic Calculation of the hep Astrophysical Factor

    Get PDF
    The astrophysical factor for the proton weak capture on 3He is calculated with correlated-hyperspherical-harmonics bound and continuum wave functions corresponding to a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana-IX three-nucleon interactions. The nuclear weak charge and current operators have vector and axial-vector components, that include one- and many-body terms. All possible multipole transitions connecting any of the p-3He S- and P-wave channels to the 4He bound state are considered. The S-factor at a p-3He center-of-mass energy of 10 keV, close to the Gamow-peak energy, is predicted to be 10.1 10^{-20} keV b, a factor of five larger than the standard-solar-model value. The P-wave transitions are found to be important, contributing about 40 % of the calculated S-factor.Comment: 8 pages RevTex file, submitted to Phys. Rev. Let

    The Ay Problem for p-3He Elastic Scattering

    Get PDF
    We present evidence that numerically accurate quantum calculations employing modern internucleon forces do not reproduce the proton analyzing power, A_y, for p-3He elastic scattering at low energies. These calculations underpredict new measured analyzing powers by approximately 30% at E_{c.m.} = 1.20 MeV and by 40% at E_{c.m.} = 1.69 MeV, an effect analogous to a well-known problem in p-d and n-d scattering. The calculations are performed using the complex Kohn variational principle and the (correlated) Hyperspherical Harmonics technique with full treatment of the Coulomb force. The inclusion of the three-nucleon interaction does not improve the agreement with the experimental data.Comment: Latex file, 4 pages, 2 figures, to be published on Phys. Rev. Let

    Application of EFT at Thermal Energies

    Full text link
    We have been evaluated some observables of n-d systems by using pionless Effective Field Theory(\EFTNoPion) and insertion of the three-body force up to next-to-next to leading order(N2^2LO). The evaluated data has been compared with experimental and the three-nucleon calculation of the total cross section with modern realistic two- and three-nucleon forces AV18/UrbIX potential models calculations.Comment: 3 pages, 1 figure and 1 table. Talk given at 20th European Conference on Few-Body Problems in Physics (EFB 20), Pisa, Italy, 10-14 Sep 200

    Polarization observables in p-d scattering below 30 MeV

    Full text link
    Differential and total breakup cross sections as well as vector and tensor analyzing powers for p-d scattering are studied for energies above the deuteron breakup threshold up to E(lab)=28 MeV. The p-d scattering wave function is expanded in terms of the correlated hyperspherical harmonic basis and the elastic S-matrix is obtained using the Kohn variational principle in its complex form. The effects of the Coulomb interaction, which are expected to be important in this energy range, have been rigorously taken into account. The Argonne AV18 interaction and the Urbana URIX three-nucleon potential have been used to perform a comparison to the available experimental data.Comment: 31 pages, 8 figure

    Structure of A=3 Nuclear Systems Using Realistic Hamiltonians

    Full text link
    The structure of A=3 low-energy scattering states is described using the hyperspherical harmonics method with realistic Hamiltonian models, consisting of two- and three-nucleon interactions. Both coordinate and momentum space two-nucleon potential models are considered.Comment: 3 pages, 1 table, Proceedings of the 20th European Conference on Few-Body Problems in Physics (EFB20), Pisa, September 200

    Variational Calculation on A=3 and 4 Nuclei with Non-Local Potentials

    Full text link
    The application of the hyperspherical harmonic approach to the case of non-local two-body potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The binding energies and other ground state properties of A=3 and 4 nuclei are calculated using the CD Bonn 2000 and N3LO two-body potentials. The results are shown to be in excellent agreement with corresponding ones obtained by other accurate techniques.Comment: 12 pages, 6 tables, RevTex

    Different formulations of 3He and 3H photodisintegration

    Full text link
    Different momentum space Faddeev-like equations and their solutions for the radiative pd-capture and the three-nucleon photodisintegration of 3He are presented. Applications are based on the AV18 nucleon-nucleon and the Urbana IX three nucleon forces. Meson exchange currents are included using the Siegert theorem. A very good agreement has been found in all cases indicating the reliability of the used numerical methods. Predictions for cross sections and polarization observables in the pd-capture and the complete three nucleon breakup of 3He at different incoming deuteron/photon energies are presented.Comment: 18 pages, 9 ps figure
    corecore