292 research outputs found

    Towards artificial photosynthesis: Promoting microscale photochemistry in science education

    Get PDF
    In order to simulate basic features of the natural cycle of photosynthesis and respiration, a model experiment called Photo-Blue-Bottle PBB has been developed. According to the title of this paper, the experiment will be presented and interpreted in accordance to basic contents from science education. An extended version of the PBB experiment also enables the evolution of hydrogen. This is a key step towards a prospective technological scenario with solar light driven production of “green fuels”. The concept of electronically excited state, the “heart of all photoprocesses” (N. J. Turro), will be completed by further teaching experiments and concepts concerning the up-to-date topic of photoactive molecular switches

    Highly enantioselective hydroamination to six-membered rings by heterobimetallic catalysts

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.New bimetallic Zn/Zr salen-type systems were employed as catalysts in the asymmetric intramolecular hydroamination reaction. High enantioselectivity for the formation of piperidines of up to 98% ee were observed.DFG, TRR 88, Kooperative Effekte in homo- und heterometallischen Komplexen (3MET

    Developing a Model Framework for Predicting Effects of Woody Expansion and Fire on Ecosystem Carbon and Nitrogen in a Pinyon-Juniper Woodland

    Get PDF
    Sagebrush-steppe ecosystems are one of the most threatened ecosystems in North America due to woodland expansion, wildfire, and exotic annual grass invasion. Some scientists and policy makers have suggested that woodland expansion will lead to increased carbon (C) storage on the landscape. To assess this potential we used data collected from a Joint Fire Sciences Program demonstration area to develop a Microsoft Excelℱ based biomass, carbon, and nitrogen (N) spreadsheet model. The model uses input for tree cover, soil chemistry, soil physical properties, and vegetation chemistry to estimate biomass, carbon, and nitrogen accumulation on the landscape with woodland expansion. The model also estimates C and N losses associated with prescribed burning. On our study plots we estimate in treeless sagebrush-steppe ecosystems, biomass accounts for 4.5 Mg ha−1 C and 0.3 Mg ha−1 N this is \u3c10% of total estimated ecosystem C and N to a soil depth of 53 cm, but as tree cover increases to near closed canopy conditions aboveground biomass may account for 62 Mg ha−1 C and 0.6 Mg ha−1 N which is nearly 53% of total estimated ecosystem C and 13% of total estimated ecosystem N to a soil depth of 53 cm. Prescribed burning removes aboveground biomass, C and N, but may increase soil C at areal tree cover below 26%. The model serves as a tool by which we are able to assess our understanding of the system and identify knowledge gaps which exist for this ecosystem. We believe that further work is necessary to quantify herbaceous biomass, root biomass, woody debris decomposition, and soil C and N with woodland expansion and prescribed fire. It will also be necessary to appropriately scale these estimates from the plot to the landscape

    Influence of Prescribed Fire on Ecosystem Biomass, Carbon, and Nitrogen in a Pinyon Juniper Woodland

    Get PDF
    Increases in pinyon and juniper woodland cover associated with land-use history are suggested to provide offsets for carbon emissions in arid regions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long-term storage in fire-prone ecosystems. Also, the objectives of carbon storage may conflict with management for other ecosystem services and fuels reduction. Before appropriate decisions can be made it is necessary to understand the interactions between woodland expansion, management treatments, and carbon retention. We quantified effects of prescribed fire as a fuels reduction and ecosystem maintenance treatment on fuel loads, ecosystem carbon, and nitrogen in a pinyon–juniper woodland in the central Great Basin. We found that plots containing 30% tree cover averaged nearly 40 000 kg · ha−1 in total aboveground biomass, 80 000 kg · ha−1 in ecosystem carbon (C), and 5 000 kg · ha−1 in ecosystem nitrogen (N). Only 25% of ecosystem C and 5% of ecosystem N resided in aboveground biomass pools. Prescribed burning resulted in a 65% reduction in aboveground biomass, a 68% reduction in aboveground C, and a 78% reduction in aboveground N. No statistically significant change in soil or total ecosystem C or N occurred. Prescribed fire was effective at reducing fuels on the landscape and resulted in losses of C and N from aboveground biomass. However, the immediate and long-term effects of burning on soil and total ecosystem C and N is still unclear

    Woodland Expansion\u27s Influence on Belowground Carbon and Nitrogen in the Great Basin U.S.

    Get PDF
    Vegetation changes associated with climate shifts and anthropogenic disturbance can have major impacts on biogeochemical cycling and soils. Much of the Great Basin, U.S. is currently dominated by sagebrush (Artemisia tridentate (Rydb.) Boivin) ecosystems. Sagebrush ecosystems are increasingly influenced by pinyon (Pinus monophylla Torr. & FrĂ©m and Pinus edulis Engelm.) and juniper (Juniperus osteosperma Torr. and Juniperus occidentalis Hook.) expansion. Some scientists and policy makers believe that increasing woodland cover in the intermountain western U.S. offers the possibility of increased organic carbon (OC) storage on the landscape; however, little is currently known about the distribution of OC on these landscapes, or the role that nitrogen (N) plays in OC retention. We quantified the relationship between tree cover, belowground OC, and total below ground N in expansion woodlands at 13 sites in Utah, Oregon, Idaho, California, and Nevada, USA. One hundred and twenty nine soil cores were taken using a mechanically driven diamond tipped core drill to a depth of 90 cm. Soil, coarse fragments, and coarse roots were analyzed for OC and total N. Woodland expansion influenced the vertical distribution of root OC by increasing 15–30 cm root OC by 2.6 Mg ha−1 and root N by 0.04 Mg ha−1. Root OC and N increased through the entire profile by 3.8 and 0.06 Mg ha−1 respectively. Woodland expansion influenced the vertical distribution of soil OC by increasing surface soil (0–15 cm) OC by 2.2 Mg ha−1. Woodland expansion also caused a 1.3 Mg ha−1 decrease in coarse fragment associated OC from 75–90 cm. Our data suggests that woodland expansion into sagebrush ecosystems has limited potential to store additional belowground OC, and must be weighed against the risk of increased wildfire and exotic grass invasion

    Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments

    Get PDF
    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options

    A Synopsis of Short-Term Response to Alternative Restoration Treatments in Sagebrush-Steppe: The SageSTEP Project

    Get PDF
    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the best chance managers have for arresting woodland expansion and cheatgrass invasion that may accelerate in a future warming climate

    Depth of Field Segmentation for Near-Lossless Image Compression and 3D Reconstruction

    Get PDF
    Over the years, photometric 3d reconstruction gained increasing importance in several disciplines, especially in cultural heritage preservation. While increasing sizes of images and datasets enhanced the overall reconstruction results, requirements in storage got immense. Additionally, unsharp areas in the background have a negative influence on 3d reconstructions algorithms. Handling the sharp foreground differently from the background simultaneously helps to reduce storage size requirements and improves 3d reconstruction results. In this paper, we examine regions outside the Depth of Field (DoF) and eliminate their inaccurate information to 3d reconstructions. We extract DoF maps from the images and use them to handle the foreground and background with different compression backends making sure that the actual object is compressed losslessly. Our algorithm achieves compression rates between 1:8 and 1:30 depending on the artifact and DoF size and improves the 3d reconstruction
    • 

    corecore