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Over the years, photometric 3d reconstruction gained increasing importance in several disciplines, especially in cultural

heritage preservation. While increasing sizes of images and datasets enhanced the overall reconstruction results, requirements

in storage got immense. Additionally, unsharp areas in the background have a negative inluence on 3d reconstructions

algorithms. Handling the sharp foreground diferently from the background simultaneously helps to reduce storage size

requirements and improves 3d reconstruction results. In this paper, we examine regions outside the Depth of Field (DoF) and

eliminate their inaccurate information to 3d reconstructions. We extract DoF maps from the images and use them to handle the

foreground and background with diferent compression backends making sure that the actual object is compressed losslessly.

Our algorithm achieves compression rates between 1:8 and 1:30 depending on the artifact and DoF size and improves the 3d

reconstruction.

CCS Concepts: · Computing methodologies → Image compression; Reconstruction; Image segmentation.

Additional Key Words and Phrases: depth of ield estimation, near-lossless compression of image data, digital image archiving

1 INTRODUCTION

To achieve state of the art digitization of cultural heritage objects, large datasets are mandatory. For an accurate 3d

reconstruction these need to consist of a wide array of diferent information, mainly consisting of high resolution
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images and other scene parameters. To safely preserve these artifacts digitally and therefore their inherent

heritage for generations to come, the storage of copies across the world is essential. This goal however is limited

by the sheer amount of necessary data per object. For these reasons, large transfer and storage costs are induced.

We focus on the compression of image data, as it comprises the largest part of the data with well known

statistical properties and therefore can yield the most promising storage space reduction results. When capturing

images, they are either saved in their camera’s proprietary ile format or are left uncompressed. Cameras however

are not able to produce satisfactory compression rates due to hardware limitations and generic compression

algorithms are not suitable for the required compression rates. Other state of the art image compression algorithms

sufer from limitations induced by camera noise [21]. This leads to near-lossless approaches that further reduce

input data while keeping relevant image parts or frequency spectra lossless.

The current practice of museums and their digital archives is to store cultural heritage image datasets depending

on their original captured ile format. If only lossless JPEG representations are available, eicient storage is

trivial. If, on the other hand, lossless raw image formats are available, there are magnitudes of additional storage

requirements. In the latter case, most museums use, a lossy representation, namely JPEG2000 despite of its data

loss, to store the data with the negative efect of losing potentially relevant information. In this paper we solve

this issue of losing relevant data related to the artifact itself and combine it with the application of standard lossy

compression techniques for less important parts of the scene, i.e. the background.

Therefore our algorithm takes advantage of the design of most stereo algorithms. These usually minimize a

data term that is derived from pixel similarity at diferent disparity levels and is sensitive to edges. Homogeneous

and blurred regions are regions that do not contain edges nor corners These regions usually occur in the

background of images. They are usually approximated by learned image statistics of neighboring pixels [23].

This leads to the observation that homogeneous regions do not explicitly contribute depth information to the

reconstruction result and may contribute faulty approximated values to the reconstruction. We present an

algorithm that automatically segments the background (i.e. the homogeneous region) from the foreground, which

contains important information about the cultural heritage using a Depth of Field segmentation approach. This

segmentation mask is then used to compress the image data with standard image compression backends. We

also apply the same segmentation on the 3d reconstruction algorithm in order to show that removal of blurry

background parts has positive impact on the reconstruction result. This inding additionally supports the claim

of lossy compression techniques in these image regions.

2 RELATED WORK

Ditigal Cultural Heritage Preservation. Stephenson [19] reviews an interactive digital image database for cultural

heritage artifacts in terms of structure, tools and descriptiveness of included metadata. The application of Politou

et al. [15] use the progressive image transmission technique of the JPEG2000 algorithm to eiciently browse and

transmit cultural heritage images over the internet in a web browser. Pavlidis et al. [13] give an overview of

state-of-the-art algorithms and techniques suitable for 3d reconstructions of cultural heritage artifacts.

Lossy Compression. The most common lossy natural image compression algorithm JPEG of Wallace [24] takes

a 3x8 bit image and estimates the discrete cosine coeicients of 8x8 pixel patches. Afterwards, it quantizes the

coeicients and compresses them using Hufmann coding [8]. The JPEG2000 algorithm of Christopoulos et al. [7]

applies a discrete wavelet transformation to the image and stores quantized coeicients with an arithmetic coder.

JPEG2000 also supports lossless image compression by applying a reversible integer wavelet transformation to

the image.

Near-Lossless Compression. The Multiview Image Compression Algorithm of Battin et al. [2] utilizes inter-view

redundancies and exploits the positive-sided geometric distribution between pixels of two neighboring images.
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Fig. 1. Overview over the proposed algorithm. First, the images from the dataset are used to create a Depth of Field mask for

each image. Then, the mask is used to separate the foreground and the background. The foreground and the mask itself is

then encoded using the lossless JPEG2000 algorithm. The background is encoded using the lossy JPEG2000 algorithm. Both

compressed images are then saved to the archive.

Aydinoglu and Hayes [1] use the previously computed disparity values to estimate every second frame. They

compensate photometric variations using the subspace projection technique. The adaptive approach of Perra

[14] aims to minimize the entropy of the Diferential Pulse-Code Modulation (DPCM) for each block that is

small enough that residual image encoding can be omitted. The DPCM coeicients are encoded using the LZMA

algorithm. von Buelow et al. [22] use a joint technique of superpixels and igure-ground segmentation in order to

apply lossy and lossless compression techniques to the image, depending on the homogeneity of the superpixel

content. This work also demonstrates that big noisy background parts still contain enough entropy to make

lossless compression ineicient.

Lossless Compression. The PNG algorithm of Boutell [3] evaluates several local ilters (i.e. diferences) on

neighboring pixels, encodes the ilter’s identiier with the lowest response and compresses its response using

Hufmann coding. The PNG algorithm is able to encode images with up to four color channels and a color

depth of 32 bit and can therefore be used to encode raw camera sensor data. The compression algorithm of von

Buelow et al. [21] uses a wavelet-based compression scheme and re-arranges the Bayer pattern into diferent

color channels. The results are evaluated on dedicated cultural heritage datasets.

Image Masking and Depth of Field Estimation. The igure-ground segmentation algorithm GrabCut of Rother

et al. [16] segments images into multiple regions that have similar color distributions by iteratively reining

user-annotated color distributions and enforcing local homogeneous labelling with a Markov Random Field.

Nasse [12] estimates the Depth of Field with respect to camera, lens properties and the focus distance. The

standard ISO/TS 19264-1 [9] deines metrics for image sharpness analysis that usually difers with focus. Burns

[6] speciies an approach that estimates sharpness with slanted edge image targets.

3 ALGORITHM

The main idea of our algorithm is loosely based on the idea of von Buelow et al. [22]. It distinguishes between the

image foreground and the image background. The foreground contains regions that contain relevant information,

i.e. the recorded artifact. Therefore, it should be compressed losslessly in order to keep relevant information. In

contrast to that, the background contains regions that are less or not relevant at all. These can be compressed by

lossy techniques without negative efects on the performance of a 3d reconstruction algorithm. This diferentiation

between foreground and background constitutes an efective compromise between storage comsumption and

originality of the resulting representation.

This section is structured as follows. Section 3.1 describes a lossless image representation that is able to

compress digital camera raw iles using the JPEG2000 standard. In the following, this representation is extended

to use lossy techniques in the background. Therefore, the algorithm computes a Depth of Field (DoF) segmentation

ACM J. Comput. Cult. Herit.
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Fig. 2. The Bayer patern groups four neighboring pixels that can be re-arranged into independent color channels [21].

(section 3.2). This segmentation is fundamental for the following compression step as is efectively separates the

lossless part from the lossy part. Section 3.3 describes the algorithm’s actual encoding step, which introduces an

additional technique to compress the background part with lossy techniques. Finally, section 3.4 shortly describes

the decompression. Figure 1 gives an overview over the process.

3.1 Lossless Master-File Representation

The highest quality image representation that is usually obtainable from digital cameras is the so called raw

format, which is an ambiguous term used for diferent vendor-speciic proprietary image representations. These

image representations have in common that they support high dynamic range images, i.e. bit depths of between

8 bit and 16 bit, that are not afected by any post-processing routines.

In the following we handle images in a capturing dataset independently and do not make use of any inter-view

redundancies due to its inferior performance in high-quality image datasets [21].

Compression Backend. Generally, our algorithm design allows using arbitrary state of the art image compression

algorithms that support encoding 16 bit images with at least 4 color channels losslessly. In contrast to the work

of von Buelow et al. [22], we decided to use the JPEG2000 algorithm, as its lossless wavelet coding technique

generally achieves superior compression rates compared to the PNG algorithm. Although the JPEG2000 format is

in general less popular and wide-spread compared to other image formats, it has a high acceptance in the cultural

heritage domain [5, 11]. A second advantage is that JPEG2000 also has a lossy mode that uses an irreversible

mother wavelet and quantization. Therefore, JPEG2000 is also beneicial for the background encoding, which is

described later.

Image Encoding. As most cameras encode color information using the Bayer pattern, our algorithm irst re-

arranges the pixel data in order to ensure that neighboring pixels originate from the same type of color ilter. This

is important, as image compression algorithms highly depend on redundancies that come from similar adjacent

pixel values. Therefore, the lossless image data is encoded by dividing the Bayer pattern of the camera into four

color channels as illustrated in ig. 2. This re-arranged representation is fed into tho JPEG2000 compression

backend. In order to ensure the lossless mode in JPEG2000, we disable the multiple component transform option

and set the target compression rate to 1:1. Additionally, we perform for testing purposes a pixel-wise comparison

of the decompressed image and the original image data in order to ensure the reversibility of the compression.

3.2 Image Masking

Image masking describes the process of foreground and background segmentation and extraction, where the

foreground contains only the region of interest and the background is usually removed. The background often

consists of the blurred environment behind the object and more challenging, the surface or mount attached to

the foreground object. Especially in the cultural heritage domain, fragile artifacts are often mounted on and

stabilized by their individually designed stands. Concerning the process of photogrammetric 3d digitization,
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(a) (b)

Fig. 3. (a) A graphical user interface for defining initial scribbles for color masking and (b) steps from our fully automatic

depth-based masking using depth of field projection.

these mounts may partially occlude an artifact’s surface. This issue can be resolved by repositioning the artifact

eighter in the same or a diferent mount, e.g. by placing it upside down. Then the complete surface can be

captured and later aligned throuhout multiple scan passes. To prevent the mount structure, which then has an

inconsistent positioning relative to the artifact, from confusing 3d reconstruction algorithms it is carefully masked

out together with the background. Furthermore, this enhances the runtime performance of photogrammetric

algorithms by reducing the amount of data to be processed. This is a tedious but common image preprocessing

step for photogrammetry that can enhance the resulting 3d model while reducing the computation time. Image

masks restrict computationally expensive steps during the 3d reconstruction, (such as feature detection, dense

image matching and texture mapping,) to only those image regions containing parts of the object of interest.

Especially when the artifact had to be repositioned throughout multiple scan passes, the utilization of image

masks is essential for a clean registration between the diferent image sets. During this feature based alignment

process across multiple passes, masking can remove the confusion with otherwise reappearing visible structures,

such as the surface of a table or mount under the object, as we show later in the result section. Therefore, most

state-of-the-art photogrammetry software solutions, such as Agisoft Metashape, ofer the option to provide binary

masks along with the actual image set as input. We analyzed two diferent types of input masks in combination

with image compression: color-based and depth-based masks.

Color-Based Masking. To automatically mask image sets of arbitrary size suited for photogrammetric 3d

reconstruction the Competence Center For Cultural Heritage Digitization [17, 18] of the Fraunhofer Institute for

Computer Graphics Research developed an image masking application that requires only little initial user input.

ACM J. Comput. Cult. Herit.
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The approach relies on diferences in color and contrast and is based on GrabCut [16], that extends the original

image segmentation by graph cut [4] with an iterative energy minimization. It is carried out as follows.

With scribbles the user approximately marks foreground and background on one or more images of the set.

From the marked areas a Gaussian Mixture Model (GMM) on multiple dimensions from color spaces, such as

RGB, Lab and HSV, is formed and iteratively reined on the marked images. Figure 3a shows the initial user

input on one image and on the left side the retrieved means of the typically ive components of the GMMs for

background and foreground visualized in RGB. This reined segmentation model can be saved and then applied

to all other images of the set. Optionally, the aggressiveness or connectivity of the masking can be adjusted by

additionally applying a morphological ilter chain of subsequent erosion and dilation operations. The resulting

blobs can as well be iltered by size and position.

Datasets prepared with the CultArm3D scanning station [20] are normally easy to mask by colors because the

station contains a turntable to place the object on and a black or white solid background shield.

Depth of Field Masking. Especially visible in macro photography and caused by a narrow depth of ield (DoF),

parts of objects become blurry and lead to blurry textures on the 3d model. To address this problem, masked

foreground regions can further be reduced to only their sharp parts by thresholding images with respect to

depth, more precisely, the distance from the focus plane. The focus plane is parallel to the image sensor and

placed on the object of interest. It can also cut through the object causing a depth mask estimation as shown in

ig. 3b. This projection of a DoF mask on the original image can be automatically performed if camera intrinsics,

extrinsics and 3d object surface information is available. Therefore, we use an incremental approach, where

irst the object is in parts reconstructed without using image masks. Then masks are produced by thresholding

rendered depth images of the reconstructed surface from the aligned corresponding camera perspectives. By

using a ixed focus distance and a prior calibration step for retrieving precise camera instrinsics, the rendered

masks overlay with the corresponding original images. Therefore, they can be used for incremental reinement,

masking and compression.

To ensure optimal DoF masking, not only the camera angle must be precisely aligned, but also the DoF itself

must be properly sized around the focus plane. As the distance from this plane increases, the image quality

usually decreases. The depth of ield describes the acceptably sharp area around this plane. With a properly

selected DoF the human eye is not able to detect any diference between the smallest recognizable sharp dot at

optimal focus distance and its blurred version at near and far plane [12].

The maximum size of this blurred dot at near and far plane is deined by the circle of confusion. In addition to

the focus distance � and the circle of confusion � , the depth of ield depends on the focal length � and the used

aperture � and can be approximated as follows.

DoF =

� � 2

� 2 −�� (� − � )
−

� � 2

� 2 +�� (� − � )
(1)

In eq. 1 the minuend describes the far plane and the subtrahend the near plane. The two planes are the

farthest and nearest still acceptable sharp planes, respectively. In order to obtain the inal segmentation mask for

compression and 3d reconstruction, we apply a threshold to this depth masks that converts the depth map to a

binary label image that represents the foreground and background regions.

Depth of Field and Lossy Compression. To describe the quality diferences more accurately within the depth

of ield, the modulation transformation function (MTF) is used in ISO/TS 19264-1 [9]. MTF shows resolution

and contrast information simultaneously so that a camera system can be evaluated based on the requirements

for a speciic application. Summary metrics can be used to condense and simplify the comparability of MTF.

The two most common metrics are MTF50 and MTF10. MTF50 generally relects the overall details in an image

ACM J. Comput. Cult. Herit.
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Fig. 4. Evaluated MTF quality metric on a captured SFR target at diferent distances around a fixed focus distance of 45 cm.

For comparison, each image is processed with and without compression.

well. MTF10, the limiting resolution, depicts the smallest detail in an image. Thus, MTF10 captures higher image

frequencies, while MTF50 captures average image frequencies.

Figure 4 shows MTF50 and MTF10 for the complete depth of ield of 1.3 cm determined in 2mm steps around

the optimal ixed focus distance of 45 cm. At each distance step, one image of an SFR target [6] was captured

with and without using image compression and then evaluated for their MTF summary values. In this example, a

Phase One iXG 100MP camera with a Schneider RS 72mm/iXG lens was used. A high JPEG compression at 10 %

quality was optionally applied, to emphasize the efect of image compression on image quality.

Within the depth of ield, a clear inluence of the compression on the image details can be observed. Especially

MTF10, which captures ine details, is strongly inluenced by the compression. However, while approaching

the near and far plane, the curves without and with compression converge. The more blurred the image areas

become, the smaller is the negative inluence of compression on the image. Especially outside of the depth of

ield, there is hardly any diference noticeable. This supports our approach of applying lossy image compression

only on masked areas of the image that are outside the depth of ield.

3.3 Near-Lossless Representation

Lossy image compression algorithms generally aim to remove small frequency changes that do not contribute

to the image, e.g. noise. A problem lies in the distinction between noise and sharp edges, which have similar

statistics. As regions outside the DoF do not contain any edges and this is less useful for the 3d reconstruction as

mentioned in section 3.2, it is save to apply lossy techniques to these regions.

In this section, we therefore extend the lossless representation from section 3.1 to handle foreground and

background parts separately. First, we introduce an additional channel to the lossless representation that encodes

a binary label for each pixel that identiies foreground and background parts. Additionally, we set each pixel from

the background part to zero. This way, we retain the adjacency information within the foreground while saving

ACM J. Comput. Cult. Herit.
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storage space in the background as the underlying arithmetic coder automatically encodes these zero values with

negligible cost. Similarly, the introduction of the label channel will have little efect on the compression rates as

these binary labels are locally very homogeneous.

Background Compression Backend. While it is also possible to use an arbitrary image compression algorithm

for the background, the choice of the lossy compression technique is speciic to the application. We chose the

JPEG2000 algorithm for two reasons. Firstly, the JPEG2000 algorithm has both lossless and lossy capabilities and

thus does not introduce a further dependency. Secondly, the compression and quantization of wavelet coeicients

is theoretically equal to blurring images. Since the background is already physically blurred we do not expect

negative implication other than noise reduction.

Background Encoding. Similar to the foreground encoding, we set each pixel of the foreground to zero in order

to ilter out parts that are already compressed losslessly. Unfortunately this technique produces artifacts at the

segmentation boundary as the quantization of high detail wavelet-coeicients efectively blurs sharp edges at the

mask boundary and the zeroed out foreground pixels inluence the neighboring background pixels. In order to

address this issue we apply a morphological erosion onto the mask which makes sure to include a support-region

to the background. We chose the support-regions size according to the number of wavelet levels (5 by default)

used in the JPEG2000 algorithm.

3.4 Decompression

The decompression step of our algorithm works as follows. First, the lossless foreground region and the segmen-

tation mask of the image are decompressed using the reverse standard image compression algorithm used in

section 3.3. While decompressing, our algorithm already takes care of extracting the mask that was stored in a

separate channel to a separate data structure. Now, the lossy image is decompressed and its decoded pixel values

are written to the decompressed image, where the mask denotes a background lag. This way, the algorithm

efectively decompresses the faulty but required support region from section 3.3, but it is later ignored as it is

already represented by the foreground part.

4 RESULTS

In section 4.1 we give an overview of our datasets that are captured with cultural heritage image acquisition

scanners used for further evaluation. In section 4.2 we evaluate the compression rates and run-time performance

of our algorithm on the datasets with diferent types of masks. Section 4.3 evaluates errors on 3d reconstructions

given the same maskes used for compression. This section also give a short insight into the results of the lossy

background compression.

4.1 Datasets & Segmentation Results

We evaluated our compression algorithm on four multi-view geometry datasets acquired with the CultArm3D

scanning station of the Competence Center Cultural Heritage Digitization of the Fraunhofer Institute for Computer

Graphics Research [17, 18, 20]. These depict the Tin Cup (610 images), the Apple artifact (300 images) and the

Mars Venus Amor dataset (1620 images) on the one hand. These were scanned with a Phase One iXG 100MP

11608× 8708 pixel camera and a Schneider RS 72mm/iXG lens. On the other hand, there is the Java Gold: Royal

Ascetic artifact (540 images), which was scanned with the Canon EOS 5DS R 8688× 5792 pixel camera and a

Canon EF 100mm f/2.8L Macro IS USM lens. Both cameras capture with a color depth of 14 bit.

The Tin Cup data set shows a cup originating from the Art Nouveau. The Apple dataset is a non-antique

testing dataset. The Mars, Vernus and Amor dataset was scanned at the Museumslandschaft Hessen Kassel (mhk),

Germany, in October 2020 the depicted statue was carved by the German sculptor Leonhard Kern in the 17th

ACM J. Comput. Cult. Herit.
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(a) (b)

(c) (d)

Fig. 5. Segmentation results based on color (let) and DoF (right) on representative example images from the following

datasets. (a) shows the Tin Cup, (b) the Apple, (c) shows the Mars Venus Amor dataset and the Royal Ascetic is shown in (d).

The highlighted areas in white show the foreground area.

century. The Java Gold dataset was captured at the Reiss Engelhorn Museum (rem) in Mannheim, Germany in

August 2019 and shows a meditating royal ascetic found at the island Java in Indonesia.

Figure 5 illustrates these datasets by example images and their respective DoF based image masks. These

image masks give an impression of the proportion of the image foreground that is in focus. They show that large

parts of the foreground are out of focus. These images visualize how our approach has a signiicant potential for

a reduction of losslessly compressed image area compared to a segmentation based on fore- and background.

Furthermore, the example image of the Royal Ascetic shows, that these masks may be of complex shape, raising

requirements for specialized algorithms. Nevertheless, the user has always the option to visualize the masks with

our segmentation app which makes our approach transparent and veriiable.

Generally, for our application, the segmentation result is deined to be good, if the reconstruction result

improves and the compression rate increases. Both criteria are elaborated in the following sections and limited

in both directions. If we remove too much information in the image, compression rates become superior and

ACM J. Comput. Cult. Herit.
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Fig. 6. Compression rate comparison of the PNG algorithm, lossless JPEG2000 and our approach with color and DoF masks.

DoF masks are evaluated with lossy background target rates 1:8, 1:32 and 1:128. Color masks are evaluated with lossy

background target 1:128 as a comparision.

reconstruction quality becomes inferior. If we remove too less information both criteria become inferior as the

data retain more entropy and outliers inluence the reconstruction result negatively.

4.2 Compression Rate & Run-Time Performance

As mentioned in section 1, currently there is no specialized image compression implementation for cultural

heritage image datasets or other stereo datasets except from our GCH20 algorithm [22]. Digital archives tend to

overcome the issue of storage by discarding potential important image data by applying lossy image compression

algorithm. Therefore, the JPEG2000 algorithm became the de-facto standard for archiving.

We evaluated the previously described datasets on diferent compression algorithms. First, we used the

PNG algorithm as it is a wide spread lossless compression standard that is capable to encode raw images as it

supports 16 bit images. Based on the PNG algorithm, we also compare against our former cultural heritage image

compression algorithm GCH20 [22]. Similar to that, we then present the plain backend compression standard

JPEG2000 we use for our current implementation. Finally, we compare the data with our near-lossless approach

on diferent masks and rate conigurations on the background. We use the DoF masks and rate conigurations

1:8, 1:32 and 1:128 to evaluate how our algorithm performs with diferent aggressive background compression.

Secondly, we evaluate the color masks with a 1:128 lossy target compression rate coniguration to compare how

diferent masks result in the inal compression rate.

As a comparison metric, we use the outcoming compression rate � = ��

��

between the resulting storage size ��
of the individual compressed image dataset and the uncompressed representation’s size �� in bit. In the following

we format the rate � as � = 1: 1
�
for better interpretability. The uncompressed size �� is derived from the image

dimensionality (� × ℎ), number of channels (� , usually 4 for the bayer pattern) and the bit depth � and computed

as follows.

�� = � · ℎ · � · � bit (2)

Results show that the lossless version of JPEG2000 outperforms the lossless PNG algorithm on every dataset

and requires about 75 % storage consumption. Lossless JPEG2000 has a compression rate of 1:2.45 on average and

performs similarly on our datasets. However, our near-lossless algorithm performs diferently on each dataset.
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Fig. 7. Run-time performance comparison of the PNG algorithm, lossless JPEG2000 and our approach with color and DoF

masks under diferent background rates. Numbers are in minutes.

We achive a compression rate between 1:6 and 1:24 on Tin Cup, between 1:6 and 1:32 on Java Gold, between 1:5

and 1:20 on the Apple and between 1:4 and 1:9 on Mars Venus Amor. This can be explained by diferent artifact

sizes that result in diferent foreground-background coverage. If the foreground occupies a higher fraction of the

image, the compression rate will converge with the lossless JPEG2000 algorithm. The Mars Venus Amor dataset

also has a bigger DoF, which makes its foreground masks bigger. The comparison with color masks that use a

rate coniguration of 1:128 shows, that using color masks is as eicient as compressing with DoF masks at a rate

coniguration of 1:16 in most cases. When comparing with our GCH20 algorithm, it is on par with our DoF masks

with a 1:8 target compression rate. The color mask results are consistent with our GCH20 algorithm but slightly

better because of the usage of the more eicient JPEG2000 algorithm. Figure 6 shows the compression rates of

the selected compression algorithms on our datasets.

Run-Time Performance. We compare the run-time performance of the PNG standard, our previous implemen-

tation, the JPEG2000 standard and our approach. Therefore, we use the OpenJPEG implementation and libpng.

Figure 7 shows our run-time performance measurements. These measurements were taken on a 2.60 GHz Intel

Xeon E5-2650 v2 CPU. Generally, our algorithm achieves run-time performance similar to PNG, whereas lossless

JPEG2000 is approximately twice as fast. Our previous GCH20 implementation is slightly less performant than

PNG on the presented datasets which corresponds to the indings in our previous work. Nevertheless, run-time

performances are usually not a limiting factor for archiving purposes.

4.3 Reconstructionuality

We visually analyzed the quality of the resulting 3d reconstruction on the four datasets from ig. 5 with the

diferent masking approaches in combination with the image compression and without any further manual

post-processing. As a quality criteria the point cloud conidence and the texture sharpness are used.

Point Cloud Conidence. Concerning photogrammetry, the computationally expensive processing step that

completes the 3d geometry before the meshing and texturing, is the dense point cloud generation. This step

is based on depth maps calculated using dense stereo matching on neighboring camera pairs. Depth maps are

calculated for the overlapping image pairs considering their relative exterior and interior orientation parameters

ACM J. Comput. Cult. Herit.
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(a) (b) (c)
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Fig. 8. The confidence point cloud of the Tin Cup dataset reconstructed with diferent masks. (a) shows the confidence

without any masking. The reconstruction of (b) used a color mask and (c) used a DoF mask.

estimated with prior bundle adjustment step. Multiple pairwise depth maps generated for each camera are merged

together into a combined depth map, using excessive information in the overlapping regions to ilter wrong

depth measurements. For every point in the inal dense point cloud the number of contributing combined depth

maps is recorded and stored as a conidence value [10]. Thus, the conidence value describes the quantity, how

often a point was seen and triangulated. It is important to notice, that it does not describe the precision of the

triangulation. For example, many unsharp camera images of the same point could lead to a high conidence,

although the local precision would be low.

Figure 8 shows the conidence point cloud on the Tin Cup dataset. The dataset was captured in two passes

by repositioning the object once upside-down. If no masking was used during the 3d reconstruction, then the

dense point cloud contains a lot of noise and background features. It can be observed that the mount surface,

was partially reconstructed as well, introducing noise at bottom and top of the object. If color masking was

used, then background noise is removed, while the conidence on the object of interest remains. This visualizes

the positive efect of early image masking on the photogrammetric 3d reconstruction process as discussed in

section 3.2. However, complex areas that are partially self-occluded or located around edges, are still afected by

noise. This noise can be further eliminated by applying the DoF masking reinement. The conidence of the point

cloud surface inside the cup then drops because the DoF masking further reduces the size of the image areas used

for feature extraction and triangulation to the sharp regions of the image. That leads to an efective reduction

of the number of triangulations for a certain point. This efect is less visible on the surface outside of the cup,

because it is visible on both repositioned passes and thus has a higher overlap and redundancy. If a suicient

coverage and overlap is provided by the dataset, then the efect of an aggressive DoF masking is advantageous.

Our experiments show that noise during the photogrammetric reconstruction process is not only introduced by

the background, but also by unsharp image areas that are part of foreground but outside the DoF. Hence, the

efect of lossy image compression outside the DoF is negligible for the dense point cloud, because those areas are

not supposed to be used for the inal 3d reconstruction result due to their proneness to noise.

Figure 9 illustrates the inluence of DoF masking and color masking on the point cloud conidence. It can be

observed that masking efectively reduces low conidence points that are often considered as outliers or point

cloud noise (ig. 8), while increasing the amount of points with suicient conidence. This is because masking

reduces the feature extraction to only the sharp surface parts on the object and eliminates confusion with the
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background, jumping edges and unsharp parts. In the unmasked examples the conidence, i.e. triangulation

counter, can reach conidence values greater than 100 because unsharp features are also matched multiple times.

However, those triangulations are of lower precision and thus do not improve a already saturated dense cloud

quality. For example, if a single point was already precisely triangulated frommore than 10 sharp images, matching

it with another 100 additional unsharp images will not improve, if not decrease, the point’s average precision.

As for the Tin Cup, the results show that even after cutting away the oversaturated part of the histograms

the completeness of the point cloud is still ensured (ig. 8). Furthermore, the impact of masking is strong on

oversaturated simple models as the Apple (ig. 9c) and less signiicant on complex models as the ivory Mars Venus

Amor (ig. 9d), where on both sides, low conidence and oversaturated conidence are only slightly reduced.

Texture Quality. Similar to the conidence, the used masks also have an efect on the inal texture projected

onto the mesh generated from the dense point cloud. The projection of the texture is done in two steps. First,

low frequencies from diferent images are blended together to prevent edge formation and visible seems. Then,

high frequencies are taken from a selected single image that is as perpendicular as possible to a given surface.

Here, image areas outside the DoF are also likely to be selected. However, as shown in igure ig. 4, these areas do

not always contain high frequencies and thus can lead to blurred textures. This can be observed in the close-up

comparison of igure ig. 10b. In the left image, generated with color masks, there are signiicantly fewer details

than in the right image, generated with DoF masks. Here the low frequencies outside the DoF are masked out

and successfully excluded from the detailed texture mapping.

Our experiments show that the application of DoF masking leads to a signiicant increase of texture details. As

discussed in section 3.2, those ine details are prone to lossy image compression, but are preserved by our locally

lossless compression approach.

Lossy Background Compression. Figure 11 shows a representative example image from the Tin Cup dataset that

is marked in the unsharp area of the image. Figure 11b and ig. 11c show the same 800 %-zoomed area compressed

with diferent background rate conigurations 1:8 and 1:128. Although, both zoomed regions are very similar,

it can be observed that less noise remains in the 1:128 version because more blurring was applied to it. This

demonstrates the inluence of the background rate coniguration and shows that the inluence on unsharp parts

is very small. However, the compression performance is superior.

5 CONCLUSION

In this paper, we presented a near-lossless compression algorithm based on a Depth of Field segmentation that

makes use of unsharp background parts of cultural heritage artifact images and showed the positive efect

on 3d reconstructions. Our algorithm uses the standard JPEG2000 algorithm as compression backend and is

therefore easy to implement. It achieves compression rates of between 1:8 and 1:30 compared to an uncompressed

representation and can handle raw image iles without demosaicing and other pre-processing. Further, the

algorithm can work with diferent rate conigurations for lossy background compression and allows a lossless

mode. Generally it can be said that homogeneous and unsharp regions are hard to compress using standard

lossless image compression algorithms due to noise but are perfectly suited for lossy compression algorithms.

Handling these regions diferently also improves the overall accuracy of 3d reconstructions on these images.

Future Work. In the future we would like to further evaluate our algorithm outside of the cultural heritage

domain as similar use-cases exist in other areas.

SOURCE CODE

The source code for this paper is available at https://github.com/maxvonbuelow/maskcomp.
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(b) Java Gold
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(c) Apple
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Fig. 9. Histograms showing the confidence values from the point clouds reconstructed from our datasets with no masks

applied, with color masks and DoF masks. Orange bars highlight low confidence points with 1 to 10 matches, green bars are

points with suficient confidence with 11 to 20 matches and all other confidence values are marked in blue.
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