188 research outputs found

    Marker-assisted introgression improves Striga resistance in an Eritrean Farmer-Preferred Sorghum Variety

    Get PDF
    The parasitic weed Striga hermonthica hampers the production of sorghum, the most important cereal crop in Eritrea. This weed has a complex mode of infestation that adapts to many hosts and environments, complicating conventional breeding for resistance, which is the only form of crop improvement available to Eritrean breeders, but has failed. This study aimed at improving resistance against this parasite by transferring 5 Striga resistant Quantitative Trait Loci (QTLs) from resistance donor N13 to Striga susceptible Farmer-Preferred Sorghum Variety (FPSV) Hugurtay from Eritrea. The method involved backcrossing using marker-assisted selection (MAS) and evaluation of the best introgressed lines for Striga resistance in artificially infested fields. Foreground selection was performed with up to 11 polymorphic simple sequence repeat (SSR) markers linked to Striga resistance QTLs, while background selection was conducted in the BC3F2 generation with 27 polymorphic unlinked SSR markers to identify the best recovery of the recurrent parent (RP) genetic background. Out of 84 BC3F3 lines, L2P3-B, L1P5-A and L2P5P35 performed best with respect to both grain yield and reduced Striga infestation. These lines were more resistant to Striga than Hugurtay, but less resistant than N13. The three lines yielded twice as much as N13, with Area Under Striga Number Progression Curve (AUSNPC) values on average 18% higher than that of N13 and 38% lower than that of Hugurtay. This suggests that the introgressed QTLs conferred significant Striga resistance and yield advantage to these BC3F3 backcross progenies under Striga pressure. These lines have good potential for future release and demonstrate that when MAS is available to conventional breeders, even in countries with no genotyping facilities, it is a useful tool for enhancement, expediency and precision in crop improvement

    CD44+CD24− prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis

    Get PDF
    Recent evidence supports the hypothesis that cancer stem cells are responsible for tumour initiation and formation. Using flow cytometry, we isolated a population of CD44+CD24− prostate cells that display stem cell characteristics as well as gene expression patterns that predict overall survival in prostate cancer patients. CD44+CD24− cells form colonies in soft agar and form tumours in NOD/SCID mice when as few as 100 cells are injected. Furthermore, CD44+CD24− cells express genes known to be important in stem cell maintenance, such as BMI-1 and Oct-3/4. Moreover, we can maintain CD44+CD24− prostate stem-like cells as nonadherent spheres in serum-replacement media without substantially shifting gene expression. Addition of serum results in adherence to plastic and shifts gene expression patterns to resemble the differentiated parental cells. Thus, we propose that CD44+CD24− prostate cells are stem-like cells responsible for tumour initiation and we provide a genomic definition of these cells and the differentiated cells they give rise to. Furthermore, gene expression patterns of CD44+CD24− cells have a genomic signature that is predictive of poor patient prognosis. Therefore, CD44+CD24− LNCaP prostate cells offer an attractive model system to both explore the biology important to the maintenance and differentiation of prostate cancer stem cells as well as to develop the therapeutics, as the gene expression pattern in these cells is consistent with poor survival in prostate cancer patients

    Countdown to 2015 country case studies: What have we learned about processes and progress towards MDGs 4 and 5?

    Get PDF
    BACKGROUND: Countdown to 2015 was a multi-institution consortium tracking progress towards Millennium Development Goals (MDGs) 4 and 5. Case studies to explore factors contributing to progress (or lack of progress) in reproductive, maternal, newborn and child health (RMNCH) were undertaken in: Afghanistan, Bangladesh, China, Ethiopia, Kenya, Malawi, Niger, Pakistan, Peru, and Tanzania. This paper aims to identify cross-cutting themes on how and why these countries achieved or did not achieve MDG progress. METHODS: Applying a standard evaluation framework, analyses of impact, coverage and equity were undertaken, including a mixed methods analysis of how these were influenced by national context and coverage determinants (including health systems, policies and financing). RESULTS: The majority (7/10) of case study countries met MDG-4 with over two-thirds reduction in child mortality, but none met MDG-5a for 75 % reduction in maternal mortality, although six countries achieved >75 % of this target. None achieved MDG-5b regarding reproductive health. Rates of reduction in neonatal mortality were half or less that for post-neonatal child mortality. Coverage increased most for interventions administered at lower levels of the health system (e.g., immunisation, insecticide treated nets), and these experienced substantial political and financial support. These interventions were associated with ~30-40 % of child lives saved in 2012 compared to 2000, in Ethiopia, Malawi, Peru and Tanzania. Intrapartum care for mothers and newborns - which require higher-level health workers, more infrastructure, and increased community engagement - showed variable increases in coverage, and persistent equity gaps. Countries have explored different approaches to address these problems, including shifting interventions to the community setting and tasks to lower-level health workers. CONCLUSIONS: These Countdown case studies underline the importance of consistent national investment and global attention for achieving improvements in RMNCH. Interventions with major global investments achieved higher levels of coverage, reduced equity gaps and improvements in associated health outcomes. Given many competing priorities for the Sustainable Development Goals era, it is essential to maintain attention to the unfinished RMNCH agenda, particularly health systems improvements for maternal and neonatal outcomes where progress has been slower, and to invest in data collection for monitoring progress and for rigorous analyses of how progress is achieved in different contexts

    Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    Get PDF
    The designation of Burkholderia pseudomallei as a category B select agent has resulted in considerable research funding to develop a protective vaccine. This bacterium also causes a naturally occurring disease (melioidosis), an important cause of death in many countries including Thailand and Australia. In this study, we explored whether a vaccine could be used to provide protection from melioidosis. An economic evaluation based on its use in Thailand indicated that a vaccine could be a cost-effective intervention if used in high-risk populations such as diabetics and those with chronic kidney or lung disease. A literature search of vaccine studies in animal models identified the current candidates, but noted that models failed to take account of the common routes of infection in natural melioidosis and major risk factors for infection, primarily diabetes. This review highlights important areas for future research if biodefence-driven vaccines are to play a role in reducing the global incidence of melioidosis

    In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    Get PDF
    Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. Conclusions:B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems

    Effects of Increased Nitrogen Deposition and Precipitation on Seed and Seedling Production of Potentilla tanacetifolia in a Temperate Steppe Ecosystem

    Get PDF
    The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change

    Shifts in Species Composition Constrain Restoration of Overgrazed Grassland Using Nitrogen Fertilization in Inner Mongolian Steppe, China

    Get PDF
    Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha-1 yr-1) addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5–7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    • …
    corecore