89 research outputs found

    Effect of excited states and applied magnetic fields on the measured hole mobility in an organic semiconductor

    Get PDF
    Copyright 2010 by the American Physical Society. Article is available at

    Alternating Copolymers Incorporating Dithienogemolodithiophene for Field-Effect Transistor Applications

    Get PDF
    We report the synthesis of an electron-rich fused dithienogemolodithiophene monomer containing straight chain tetradecyl solubilizing groups. Copolymers were prepared with four different electron accepting monomers of varying reduction potential. We report how the choice of acceptor influences the optical properties and molecular energy levels as well as the solid state packing. Field effect transistor devices were fabricated using silver source-drain electrodes, with a promising charge carrier mobility up to 0.26 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> for films deposited from non-chlorinated solvents. These results suggest dithienogemolodithiophene is a useful building block for the development of high performance semiconducting polymers

    Influence of solid-state microstructure on the electronic performance of 5,11-Bis(triethylsilylethynyl) anthradithiophene

    Get PDF
    The rich phase behavior of 5,11-bis(triethylsilylethynyl) anthradithiophene (TES ADT) - one of the most promising, solution-processable small-molecular organic semiconductors - is analyzed, revealing the highest performing polymorph among four solid-state phases, opening pathways toward the reliable fabrication of high-performance bottom-gate/bottom-contact transistors.We are very grateful to the UK’s Engineering and Physical Sciences Research Council, the Dutch Polymer Institute (LATFE programme), and the ACS Petroleum Fund (New Directions Proposal) for financial support. We in addition acknowledge the EC’s seventh Framework Program ONE-P project (Grant Agreement 212311) for funding. N.S. is in addition supported by a European Research Council (ERC) Starting Independent Researcher Fellowship, under the grant agreement No. 279587. G.B. and E.P. acknowledges support from the ESF Project GOSPEL (Ref Nr: 09-EuroGRAPHENE-FP-001. G.B. acknowledges support from the Slovenian Research Agency, program P1-0055. N.W.O. is acknowledged for granting the beamtime at BM26B. J.E.A. acknowledges the Office of Naval Research for their support of the synthesis of organic semiconductor materials. G.B. and E.P. acknowledges support from the ESF Project GOSPEL (Ref Nr: 09-EuroGRAPHENE-FP-001). G.B. acknowledges support from the Slovenian Research Agency, program P1-0055

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam

    Get PDF
    We present the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland. SwissFEL is a very stable, compact and cost-effective X-ray FEL facility driven by a low-energy and ultra-low-emittance electron beam travelling through short-period undulators. It delivers stable hard X-ray FEL radiation at 1-Å wavelength with pulse energies of more than 500 μJ, pulse durations of ~30 fs (root mean square) and spectral bandwidth below the per-mil level. Using special configurations, we have produced pulses shorter than 1 fs and, in a different set-up, broadband radiation with an unprecedented bandwidth of ~2%. The extremely small emittance demonstrated at SwissFEL paves the way for even more compact and affordable hard X-ray FELs, potentially boosting the number of facilities worldwide and thereby expanding the population of the scientific community that has access to X-ray FEL radiation
    • …
    corecore