46 research outputs found

    Nutzung von NukleinsĂ€ure-Protein-Wechselwirkungen fĂŒr die Wirkanalytik von reaktiven Species

    Get PDF
    Reaktive Species wie Superoxid, Stickstoffmonoxid oder Peroxynitrit sind in eine Vielzahl pathophysiologischer Situationen wie z.B. das Reperfusionssyndrom involviert. Besonders hohe Konzentrationen treten auf, wenn das antioxidative Abwehrsystem nicht mehr in der Lage ist, den Radikalanstieg abzufangen. Die biomedizinische Forschung hat sich auf die Mechanismen der Freisetzung dieser Species unter unterschiedlichen Streßbedingungen fokussiert. Aus diesem Grund sind verschiedene analytische Meßmethoden fĂŒr den Nachweis entwickelt worden. Sensorische Methoden bieten den Vorteil einer rĂ€umlich und zeitlich aufgelösten Analyse der Einzelteilchen. Jedoch gibt es betrĂ€chtliche Wechselwirkungen zwischen den verschiedenen reaktiven Species, was die AussagefĂ€higkeit von Einzelmessungen in komplexen Situationen einschrĂ€nkt. Hier erscheint ein Summenparameter fĂŒr die Radikalwirkung im Sinne einer Wirkanalytik aussagekrĂ€ftiger. Das ‘iron regulatory protein 1’ (IRP1) kann als ein solches Markerprotein betrachtet werden, dessen Konzentration Aufschluß ĂŒber den zellulĂ€ren Streßlevel gibt. Das Protein wird unter der Wirkung von oxidativem Streß aus dem 4Fe-4S-Enzym cytosolische Aconitase gebildet. Das entstandene IRP1 zeigt im Gegensatz zur Aconitase eine ausgeprĂ€gte BindungsaffinitĂ€t zu spezifischen m-RNA-Strukturen - den sogenannten ‘iron responsive elements’ - IREs. Dieses Verhalten kann als Grundlage fĂŒr die sensorische Detektion des Markerproteins genutzt werden. In dem hier vorzustellenden experimentellen Ansatz wurde die Proteinbindung mit Hilfe der OberflĂ€chenplasmonresonanz detektiert. Hierzu wurde eine IRE-Konsensus-Sequenz in vitro transkribiert und anschließend auf einem Carboxydextran–modifizierten Biacore-Chip immobilisiert. Eine relativ hohe OberflĂ€chenbelegung (2000 RU /mm2) wurde sichergestellt

    Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Get PDF
    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA

    Genomic deletion and promoter methylation status of Hypermethylated in Cancer 1 (HIC1) in mantle cell lymphoma

    Get PDF
    Mantle cell lymphomas (MCL), characterized by the t(11;14)(q13;q32), frequently carry secondary genetic alterations such as deletions in chromosome 17p involving the TP53 locus. Given that the association between TP53-deletions and concurrent mutations of the remaining allele is weak and based on our recent report that the Hypermethylated in Cancer 1 (HIC1) gene, that is located telomeric to the TP53 gene, may be targeted by deletions in 17p in diffuse large B-cell lymphoma (DLBCL), we investigated whether HIC1 inactivations might also occur in MCL. Monoallelic deletions of the TP53 locus were detected in 18 out of 59 MCL (31%), while overexpression of p53 protein occurred in only 8 out of 18 of these MCL (44%). In TP53-deleted MCL, the HIC1 gene locus was co-deleted in 11 out of 18 cases (61%). However, neither TP53 nor HIC1 deletions did affect survival of MCL patients. In most analyzed cases, no hypermethylation of the HIC1 exon 1A promoter was observed (17 out of 20, 85%). However, in MCL cell lines without HIC1-hypermethylation, the mRNA expression levels of HIC1 were nevertheless significantly reduced, when compared to reactive lymph node specimens, pointing to the occurrence of mechanisms other than epigenetic or genetic events for the inactivation of HIC1 in this entity

    Additive value of [18F]PI-2620 perfusion imaging in progressive supranuclear palsy and corticobasal syndrome

    Get PDF
    Purpose: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. Methods: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). Results: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). Conclusion: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression

    Polysomal mRNA Association and Gene Expression in <i>Trypanosoma brucei</i>

    Get PDF
    Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei

    ELISA PRINCIPLES IN FLOW INJECTION IMMUNOANALYSIS (FIIA) BASIC STUDIES WITH MOUSE IMMUNOGLOBULIN G

    No full text
    The effects of incubation time, IgG subclass affiliation and immunoassay type on microtiter plate ELISA and FIIA were investigated. The advantages and limitations of the sandwich and the competitive assay for mouse IgG are discusse
    corecore