183 research outputs found

    Novel Technique for Ultra-sensitive Determination of Trace Elements in Organic Scintillators

    Get PDF
    A technique based on neutron activation has been developed for an extremely high sensitivity analysis of trace elements in organic materials. Organic materials are sealed in plastic or high purity quartz and irradiated at the HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are first preconcentrated by clean vacuum evaporation. Activities of interest are separated from side activities by acid digestion and ion exchange. The technique has been applied to study the liquid scintillator used in the KamLAND neutrino experiment. Detection limits of <2.4X10**-15 g 40K/g LS, <5.5X10**-15 g Th/g LS, and <8X10**-15 g U/g LS have been achieved.Comment: 16 pages, 3 figures, accepted for publication in Nuclear Instruments and Methods

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Lassoing and corraling rooted phylogenetic trees

    Full text link
    The construction of a dendogram on a set of individuals is a key component of a genomewide association study. However even with modern sequencing technologies the distances on the individuals required for the construction of such a structure may not always be reliable making it tempting to exclude them from an analysis. This, in turn, results in an input set for dendogram construction that consists of only partial distance information which raises the following fundamental question. For what subset of its leaf set can we reconstruct uniquely the dendogram from the distances that it induces on that subset. By formalizing a dendogram in terms of an edge-weighted, rooted phylogenetic tree on a pre-given finite set X with |X|>2 whose edge-weighting is equidistant and a set of partial distances on X in terms of a set L of 2-subsets of X, we investigate this problem in terms of when such a tree is lassoed, that is, uniquely determined by the elements in L. For this we consider four different formalizations of the idea of "uniquely determining" giving rise to four distinct types of lassos. We present characterizations for all of them in terms of the child-edge graphs of the interior vertices of such a tree. Our characterizations imply in particular that in case the tree in question is binary then all four types of lasso must coincide

    A simulated annealing methodology for clusterwise linear regression

    Full text link
    In many regression applications, users are often faced with difficulties due to nonlinear relationships, heterogeneous subjects, or time series which are best represented by splines. In such applications, two or more regression functions are often necessary to best summarize the underlying structure of the data. Unfortunately, in most cases, it is not known a priori which subset of observations should be approximated with which specific regression function. This paper presents a methodology which simultaneously clusters observations into a preset number of groups and estimates the corresponding regression functions' coefficients, all to optimize a common objective function. We describe the problem and discuss related procedures. A new simulated annealing-based methodology is described as well as program options to accommodate overlapping or nonoverlapping clustering, replications per subject, univariate or multivariate dependent variables, and constraints imposed on cluster membership. Extensive Monte Carlo analyses are reported which investigate the overall performance of the methodology. A consumer psychology application is provided concerning a conjoint analysis investigation of consumer satisfaction determinants. Finally, other applications and extensions of the methodology are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45745/1/11336_2005_Article_BF02296405.pd

    A stochastic multidimensional scaling procedure for the empirical determination of convex indifference curves for preference/choice analysis

    Full text link
    The vast majority of existing multidimensional scaling (MDS) procedures devised for the analysis of paired comparison preference/choice judgments are typically based on either scalar product (i.e., vector) or unfolding (i.e., ideal-point) models. Such methods tend to ignore many of the essential components of microeconomic theory including convex indifference curves, constrained utility maximization, demand functions, et cetera. This paper presents a new stochastic MDS procedure called MICROSCALE that attempts to operationalize many of these traditional microeconomic concepts. First, we briefly review several existing MDS models that operate on paired comparisons data, noting the particular nature of the utility functions implied by each class of models. These utility assumptions are then directly contrasted to those of microeconomic theory. The new maximum likelihood based procedure, MICROSCALE, is presented, as well as the technical details of the estimation procedure. The results of a Monte Carlo analysis investigating the performance of the algorithm as a number of model, data, and error factors are experimentally manipulated are provided. Finally, an illustration in consumer psychology concerning a convenience sample of thirty consumers providing paired comparisons judgments for some fourteen brands of over-the-counter analgesics is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45748/1/11336_2005_Article_BF02294463.pd

    A spatial interaction model for deriving joint space maps of bundle compositions and market segments from pick-any/J data: An application to new product options

    Full text link
    We propose an approach for deriving joint space maps of bundle compositions and market segments from three-way (e.g., consumers x product options/benefits/features x usage situations/scenarios/time periods) pick-any/J data. The proposed latent structure multidimensional scaling procedure simultaneously extracts market segment and product option positions in a joint space map such that the closer a product option is to a particlar segment, the higher the likelihood of its being chosen by that segment. A segment-level threshold parameter is estimated that spatially delineates the bundle of product options that are predicted to be chosen by each segment. Estimates of the probability of each consumer belonging to the derived segments are simultaneously obtained. Explicit treatment of product and consumer characteristics are allowed via optional model reparameterizations of the product option locations and segment memberships. We illustrate the use of the proposed approach using an actual commercial application involving pick-any/J data gathered by a major hi-tech firm for some 23 advanced technological options for new automobiles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47207/1/11002_2004_Article_BF00434905.pd

    A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/ J data

    Full text link
    This paper presents a new stochastic multidimensional scaling procedure for the analysis of three-mode, three-way pick any/ J data. The method provides either a vector or ideal-point model to represent the structure in such data, as well as “floating” model specifications (e.g., different vectors or ideal points for different choice settings), and various reparameterization options that allow the coordinates of ideal points, vectors, or stimuli to be functions of specified background variables. A maximum likelihood procedure is utilized to estimate a joint space of row and column objects, as well as a set of weights depicting the third mode of the data. An algorithm using a conjugate gradient method with automatic restarts is developed to estimate the parameters of the models. A series of Monte Carlo analyses are carried out to investigate the performance of the algorithm under diverse data and model specification conditions, examine the statistical properties of the associated test statistic, and test the robustness of the procedure to departures from the independence assumptions. Finally, a consumer psychology application assessing the impact of situational influences on consumers' choice behavior is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45749/1/11336_2005_Article_BF02294486.pd

    Scoring method of a Situational Judgment Test:influence on internal consistency reliability, adverse impact and correlation with personality?

    Get PDF
    textabstractSituational Judgment Tests (SJTs) are increasingly used for medical school selection. Scoring an SJT is more complicated than scoring a knowledge test, because there are no objectively correct answers. The scoring method of an SJT may influence the construct and concurrent validity and the adverse impact with respect to non-traditional students. Previous research has compared only a small number of scoring methods and has not studied the effect of scoring method on internal consistency reliability. This study compared 28 different scoring methods for a rating SJT on internal consistency reliability, adverse impact and correlation with personality. The scoring methods varied on four aspects: the way of controlling for systematic error, and the type of reference group, distance and central tendency statistic. All scoring methods were applied to a previously validated integrity-based SJT, administered to 931 medical school applicants. Internal consistency reliability varied between .33 and .73, which is likely explained by the dependence of coefficient alpha on the total score variance. All scoring methods led to significantly higher scores for the ethnic majority than for the non-Western minorities, with effect sizes ranging from 0.48 to 0.66. Eighteen scoring methods showed a significant small positive correlation with agreeableness. Four scoring methods showed a significant small positive correlation with conscientiousness. The way of controlling for systematic error was the most influential scoring method aspect. These results suggest that the increased use of SJTs for selection into medical school must be accompanied by a thorough examination of the scoring method to be used

    On plexus representation of dissimilarities

    Get PDF
    Correspondence analysis has found widespread application in analysing vegetation gradients. However, it is not clear how it is robust to situations where structures other than a simple gradient exist. The introduction of instrumental variables in canonical correspondence analysis does not avoid these difficulties. In this paper I propose to examine some simple methods based on the notion of the plexus (sensu McIntosh) where graphs or networks are used to display some of the structure of the data so that an informed choice of models is possible. I showthat two different classes of plexus model are available. These classes are distinguished by the use in one case of a global Euclidean model to obtain well-separated pair decomposition (WSPD) of a set of points which implicitly involves all dissimilarities, while in the other a Riemannian view is taken and emphasis is placed locally, i.e., on small dissimilarities. I showan example of each of these classes applied to vegetation data
    • …
    corecore