273 research outputs found

    Very thin and stable thin-film silicon alloy triple junction solar cells by hot wire chemical vapor deposition

    Get PDF
    We present a silicon-based triple junction solar cell that requires a deposition time of less than 15 min for all photoactive layers. As a low-bandgap material, we used thin layers of hydrogenated amorphous silicon germanium with lower band gap than commonly used, which is possible due to the application of hot wire chemical vapor deposition. The triple junction cell shows an initial energy conversion efficiency exceeding 10%, and with a relative performance stability within 6%, the cell shows a high tolerance to light-induced degradation. With these results, we help to demonstrate that hot wire chemical vapor deposition is a viable deposition method for the fabrication of low-cost solar cells

    Post-extraction mesio-distal gap reduction assessment by confocal laser scanning microscopy - a clinical 3-month follow-up study

    Full text link
    [EN] AimThe aim of this 3-month follow-up study is to quantify the reduction in the mesio-distal gap dimension (MDGD) that occurs after tooth extraction through image analysis of three-dimensional images obtained with the confocal laser scanning microscopy (CLSM) technique. Materials and MethodsFollowing tooth extraction, impressions of 79 patients 1month and 72 patients 3months after tooth extraction were obtained. Cast models were processed by CLSM, and MDGD changes between time points were measured. ResultsThe mean mesio-distal gap reduction 1month after tooth extraction was 343.4m and 3months after tooth extraction was 672.3m. The daily mean gap reduction rate during the first term (between baseline and 1month post-extraction measurements) was 10.3m/day and during the second term (between 1 and 3months) was 5.4m/day. ConclusionsThe mesio-distal gap reduction is higher during the first month following the extraction and continues in time, but to a lesser extent. When the inter-dental contacts were absent, the mesio-distal gap reduction is lower. When a molar tooth is extracted or the distal tooth to the edentulous space does not occlude with an antagonist, the mesio-distal gap reduction is larger. The consideration of mesio-distal gap dimension changes can help improve dental treatment planning.The authors would like to express their gratitude to MEC (contract grant number AP2008-01653), to FEDER, to the Generalitat Valenciana for its help in the CLSM acquisition (MY08/ISIRM/S/100), to the Universitat Politecnica de Valencia (PAID-05-12) and to Dr. Asuncion Jaime for her translation assistance.García-Herraiz, A.; Silvestre, FJ.; Leiva García, R.; Crespo Abril, F.; Garcia-Anton, J. (2017). Post-extraction mesio-distal gap reduction assessment by confocal laser scanning microscopy - a clinical 3-month follow-up study. Journal Of Clinical Periodontology. 44(5):548-555. https://doi.org/10.1111/jcpe.12706S548555445Aguilar, M. L., Elias, A., Vizcarrondo, C. E. T., & Psoter, W. J. (2010). Analysis of three-dimensional distortion of two impression materials in the transfer of dental implants. The Journal of Prosthetic Dentistry, 103(4), 202-209. doi:10.1016/s0022-3913(10)60032-7Amit, G., JPS, K., Pankaj, B., Suchinder, S., & Parul, B. (2012). Periodontally accelerated osteogenic orthodontics (PAOO) - a review. Journal of Clinical and Experimental Dentistry, e292-296. doi:10.4317/jced.50822Armitage, G. C. (1999). Development of a Classification System for Periodontal Diseases and Conditions. Annals of Periodontology, 4(1), 1-6. doi:10.1902/annals.1999.4.1.1Belli, R., Pelka, M., Petschelt, A., & Lohbauer, U. (2009). In vitro wear gap formation of self-adhesive resin cements: A CLSM evaluation. Journal of Dentistry, 37(12), 984-993. doi:10.1016/j.jdent.2009.08.006Belli, R., Rahiotis, C., Schubert, E. W., Baratieri, L. N., Petschelt, A., & Lohbauer, U. (2011). Wear and morphology of infiltrated white spot lesions. Journal of Dentistry, 39(5), 376-385. doi:10.1016/j.jdent.2011.02.009Brauchli, L. M., Baumgartner, E.-M., Ball, J., & Wichelhaus, A. (2011). Roughness of enamel surfaces after different bonding and debonding procedures. Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie, 72(1), 61-67. doi:10.1007/s00056-010-0002-3Chen, S. Y., Liang, W. M., & Chen, F. N. (2004). Factors affecting the accuracy of elastometric impression materials. Journal of Dentistry, 32(8), 603-609. doi:10.1016/j.jdent.2004.04.002Christou, P., & Kiliaridis, S. (2007). Three-dimensional changes in the position of unopposed molars in adults. The European Journal of Orthodontics, 29(6), 543-549. doi:10.1093/ejo/cjm036Craddock, H. L., Youngson, C. C., Manogue, M., & Blance, A. (2007). Occlusal Changes Following Posterior Tooth Loss in Adults. Part 2. Clinical Parameters Associated with Movement of Teeth Adjacent to the Site of Posterior Tooth Loss. Journal of Prosthodontics, 16(6), 495-501. doi:10.1111/j.1532-849x.2007.00223.xFaria, A. C. L., Rodrigues, R. C. S., Macedo, A. P., Mattos, M. da G. C. de, & Ribeiro, R. F. (2008). Accuracy of stone casts obtained by different impression materials. Brazilian Oral Research, 22(4), 293-298. doi:10.1590/s1806-83242008000400002García-Herraiz, A., Leiva-García, R., Cañigral-Ortiz, A., Silvestre, F. J., & García-Antón, J. (2011). Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites. Microscopy Research and Technique, 75(4), 513-519. doi:10.1002/jemt.21085Gragg, K. L., Shugars, D. A., Bader, J. D., Elter, J. R., & White, B. A. (2001). Movement of Teeth Adjacent to Posterior Bounded Edentulous Spaces. Journal of Dental Research, 80(11), 2021-2024. doi:10.1177/00220345010800111401LINDSKOG-STOKLAND, B., HANSEN, K., TOMASI, C., HAKEBERG, M., & WENNSTRÖM, J. L. (2011). Changes in molar position associated with missing opposed and/or adjacent tooth: a 12-year study in women. Journal of Oral Rehabilitation, 39(2), 136-143. doi:10.1111/j.1365-2842.2011.02252.xLove, W. D., & Adams, R. L. (1971). Tooth movement into edentulous areas. The Journal of Prosthetic Dentistry, 25(3), 271-278. doi:10.1016/0022-3913(71)90188-0Nishikawa, T., Masuno, K., Mori, M., Tajime, Y., Kakudo, K., & Tanaka, A. (2006). Calcification at the Interface Between Titanium Implants and Bone: Observation With Confocal Laser Scanning Microscopy. Journal of Oral Implantology, 32(5), 211-217. doi:10.1563/799.1Pereira, J. R., Murata, K. Y., Valle, A. L. do, Ghizoni, J. S., & Shiratori, F. K. (2010). Linear dimensional changes in plaster die models using different elastomeric materials. Brazilian Oral Research, 24(3), 336-341. doi:10.1590/s1806-83242010000300013Schilling, T., Müller, M., Minne, H. W., & Ziegler, R. (1998). Influence of Inflammation-Mediated Osteopenia on the Regional Acceleratory Phenomenon and the Systemic Acceleratory Phenomenon During Healing of a Bone Defect in the Rat. Calcified Tissue International, 63(2), 160-166. doi:10.1007/s002239900508Scivetti, M., Pilolli, G. P., Corsalini, M., Lucchese, A., & Favia, G. (2007). Confocal laser scanning microscopy of human cementocytes: Analysis of three-dimensional image reconstruction. Annals of Anatomy - Anatomischer Anzeiger, 189(2), 169-174. doi:10.1016/j.aanat.2006.09.009SHUGARS, D. A., BADER, J. D., PHILLIPS, S. W., WHITE, B. A., & BRANTLEY, C. F. (2000). THE CONSEQUENCES OF NOT REPLACING A MISSING POSTERIOR TOOTH. The Journal of the American Dental Association, 131(9), 1317-1323. doi:10.14219/jada.archive.2000.0385Thalmair, T., Fickl, S., Schneider, D., Hinze, M., & Wachtel, H. (2013). Dimensional alterations of extraction sites after different alveolar ridge preservation techniques - a volumetric study. Journal of Clinical Periodontology, 40(7), 721-727. doi:10.1111/jcpe.12111Thongthammachat, S., Moore, B. K., Barco, M. T., Hovijitra, S., Brown, D. T., & Andres, C. J. (2002). Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. Journal of Prosthodontics, 11(2), 98-108. doi:10.1053/jopr.2002.125192Van der Weijden, F., Dell’Acqua, F., & Slot, D. E. (2009). Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. Journal of Clinical Periodontology, 36(12), 1048-1058. doi:10.1111/j.1600-051x.2009.01482.xWeinstein, S. (1967). Minimal forces in tooth movement. American Journal of Orthodontics, 53(12), 881-903. doi:10.1016/0002-9416(67)90163-7Windisch, S. I., Jung, R. E., Sailer, I., Studer, S. P., Ender, A., & Hämmerle, C. H. F. (2007). A new optical method to evaluate three-dimensional volume changes of alveolar contours: a methodological in vitro study. Clinical Oral Implants Research, 18(5), 545-551. doi:10.1111/j.1600-0501.2007.01382.xYAMADA, M. K., & WATARI, F. (2003). Imaging and Non-Contact Profile Analysis of Nd: YAG Laser-Irradiated Teeth by Scanning Electron Microscopy and Confocal Laser Scanning Microscopy. Dental Materials Journal, 22(4), 556-568. doi:10.4012/dmj.22.55

    Can we continue research in splenectomized dogs? Mycoplasma haemocanis: Old problem - New insight

    Get PDF
    We report the appearance of a Mycoplasma haemocanis infection in laboratory dogs, which has been reported previously, yet, never before in Europe. Outbreak of the disease was triggered by a splenectomy intended to prepare the dogs for a hemorrhagic shock study. The clinical course of the dogs was dramatic including anorexia and hemolytic anemia. Treatment included allogeneic transfusion, prednisone, and oxytetracycline. Systematic follow-up (n=12, blood smears, antibody testing and specific polymerase chain reaction) gives clear evidence that persistent eradication of M. haemocanis is unlikely. We, therefore, had to abandon the intended shock study. In the absence of effective surveillance and screening for M. haemocanis, the question arises whether it is prudent to continue shock research in splenectomized dogs. Copyright (C) 2004 S. Karger AG, Basel

    Scanning X-ray nanodiffraction: from the experimental approach towards spatially resolved scattering simulations

    Get PDF
    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single SiGe dots and dot molecules

    Mapping the Pore Architecture of Structured Catalyst Monoliths from Nanometer to Centimeter Scale with Electron and X-ray Tomographies

    Get PDF
    The hierarchical pore systems of Pt/Al2O3 exhaust gas aftertreatment catalysts were analyzed with a collection of correlative imaging techniques to monitor changes induced by hydrothermal aging. Synergistic imaging with laboratory X-ray microtomography, synchrotron radiation ptychographic X-ray computed nanotomography, and electron tomography allowed quantitative observation of the catalyst pore architecture from centimeter to nanometer scale. Thermal aging at 750 °C in air and hydrothermal aging at 1050 °C in 10% H2O/air caused increasing structural degradation, which manifested as widespread sintering of Pt particles, increased volume and quantity of macropores (>20 nm), and reduction in effective surface area coupled with decreasing volume and frequency of mesopores (2-20 nm) and micropores (<2 nm). Electron tomography unraveled the three-dimensional (3D) structure with high resolution allowing visualization of meso- and macropores but with samples of maximum 300 nm thickness. To complement this, hard X-ray ptychographic tomography produced quantitative 3D electron density maps of 5 Οm diameter samples with spatial resolution <50 nm, effectively filling the resolution gap between electron tomography and hard X-ray microtomography. The obtained 3D volumes are an essential input for future computational modeling of fluid dynamics, mass transport, or diffusion properties and may readily complement bulk one-dimensional porosimetry measurements or simulated porosity

    Synthesis and Characterisation of Hierarchically Structured Titanium Silicalite‐1 Zeolites with Large Intracrystalline Macropores

    Get PDF
    The successful synthesis of hierarchically structured titanium silicalite‐1 (TS‐1) with large intracrystalline macropores by steam‐assisted crystallisation of mesoporous silica particles is reported. The macropore topology was imaged in 3D by using electron tomography and synchrotron radiation‐based ptychographic X‐ray computed tomography, revealing interconnected macropores within the crystals accounting for about 30 % of the particle volume. The study of the macropore formation mechanism revealed that the mesoporous silica particles act as a sacrificial macropore template during the synthesis. Silicon‐to‐titanium ratio of the macroporous TS‐1 samples was successfully tuned from 100 to 44. The hierarchically structured TS‐1 exhibited high activity in the liquid phase epoxidation of 2‐octene with hydrogen peroxide. The hierarchically structured TS‐1 surpassed a conventional nano‐sized TS‐1 sample in terms of alkene conversion and showed comparable selectivity to the epoxide. The flexible synthesis route described here can be used to prepare hierarchical zeolites with improved mass transport properties for other selective oxidation reactions

    Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL

    Get PDF
    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions
    • …
    corecore