23 research outputs found

    Is downer cow syndrome related to chronic botulism?

    No full text
    The present work was directed to investigate the relationship between Downer cow syndrome (DCS) and chronic botulism in dairy cattle. For this purpose, a total of 52 fresh calving downer cows and 206 apparently healthy cows at 14 dairy farms were investigated for Clostridium botulinum ABE and CD antibody levels, C. botulinum and botulinum neurotoxin in rumen fluids as well as in faeces. Results indicated that the downer cows had higher IgG titers for C. botulinum ABE and CD than the healthy cows. All tested rumen fluids were negative for BoNT and C. botulinum. BoNT/D, however, and C. botulinum type D spores were detected in faecal samples of healthy and downer cows in the selected farms. In conclusion, the presence of a significantly higher C. botulinum ABE and CD antibody levels in DCS cows than in the healthy animals suggests that chronic C. botulinum toxico-infection could be a predisposing factor for DCS

    Peptide design by artificial neural networks and computer-based evolutionary search

    No full text
    A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a "seed peptide" with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-beta1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human beta1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity

    The Na+/HCO3− co-transporter is protective during ischemia in astrocytes

    No full text
    The sodium bicarbonate co-transporter (NBC) is the major bicarbonate-dependent acid-base transporter in mammalian astrocytes and has been implicated in ischemic brain injury. A malfunction of astrocytes could have great impact on the outcome of stroke due to their participation in the formation of blood brain barrier, synaptic transmission, and electrolyte balance in the human brain. Nevertheless, the role of NBC in the ischemic astrocyte death has not been well understood. In this work, we obtained skin biopsies from healthy human subjects and had their fibroblasts grown in culture and reprogrammed into human induced pluripotent stem cells (hiPSCs). These hiPSCs were further differentiated into neuroprogenitor cells (NPCs) and then into human astrocytes. These astrocytes express GFAP and S100β and readily propagate calcium waves upon mechanical stimulation. Using pH sensitive dye BCECF [2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein] and qPCR technique, we have confirmed that these astrocytes express functional NBC including electrogenic NBC (NBCe). In addition, astrocytes exposed to an ischemic solution (IS) that mimics the ischemic penumbral environment enhanced both mRNA and protein expression level of NBCe1 in astrocytes. Using IS and a generic NBC blocker S0859, we have studied the involvement of NBC in IS-induced human astrocytes death. Our results show that a 30 µM S0859 induced a 97.5±1.6% (n=10) cell death in IS- treated astrocytes, which is significantly higher than 43.6 ± 4.5%, (n=10) in the control group treated with IS alone. In summary, a NBC blocker exaggerates IS-induced cell death, suggesting that NBC activity is essential for astrocyte survival when exposed to ischemic penumbral environment

    Innervation of the uvea by galanin and somatostation immunoreactive axons in macaques and baboons

    No full text
    The neuropeptide galanin has not been localized previously in the primate uvea, and the neuropeptide somatostatin has not been localized in the uvea of any mammal. Here, the distribution of galanin-like and somatostatin-like immunoreactive axons in the iris, ciliary body and choroid of macaques and baboons using double and triple immunofluorescence labeling techniques and confocal microscopy was reported. In the ciliary body, galanin-like immunoreactive axons innervated blood vessels and the ciliary processes, particularly at their bases. In the iris, the majority of these axons was associated with the loose connective tissue in the stroma. Somatostatin-like immunoreactive axons were found in many of the same areas of the uvea supplied by cholinergic nerves. In the ciliary body, there were labelled axons within the ciliary processes and ciliary muscle. They were also found alongside blood vessels in the ciliary stroma. In the iris, somatostatin-like immunoreactive axons were abundant in the sphincter muscle and less so in the dilator muscle. A unilateral sympathectomy had no effect on the distribution of somatostatin-like or galanin-like immunoreactive axons, and these axons did not contain the sympathetic marker tyrosine hydroxylase. They did not contain the parasympathetic marker choline acetyltransferase, either. The galanin-like immunoreactive axons contained other neuropeptides found in sensory nerves, including calcitonin gene-related peptide, substance P and cholecystokinin. Somatostatin-like immunoreactive axons did not contain any of these sensory neuropeptides or galanin-like immunoreactivity, and they were neither labelled with an antibody to 200 kDa neurofilament protein, nor did they bind isolectin-IB4. Nevertheless, they are likely to be of sensory origin because somatostatin-like immunoreactive perikarya have previously been localized in the trigeminal ganglion of primates. Taken together, these findings indicate galanin and somatostatin are present in two different subsets of sensory axons in primate uvea
    corecore