579 research outputs found

    Does body and fin form affect the maneuverability of fish traversing vertical and horizontal slits?

    Full text link
    The purpose of this study was to determine if body and fin form affected the maneuverability of teleostean fishes as measured by their ability to negotiate simple obstacles. Obstacles were vertical and horizontal rectangular slits of different widths, for which width was defined as the minimum dimension of a slit irrespective of slit orientation. Performance was measured as the smallest slit width traversed. Three species with different body and fin patterns were induced to swim through slits. Species tested were; goldfish Carassius auratus with a fusiform body, anterio-ventral pectoral fins and posterio-ventral pelvic fins; silver dollars Metynnis hypsauchen with the same fin configurations but a gibbose body; angelfish Pterophyllum scalare with a gibbose body and anterio-lateral pectoral fins. Minimum slit widths negotiated were normalized with the length of various body dimensions: total length, maximum width, span at the pectoral fins, and volume 1/3 (numerically equal to mass 1/3 ). Goldfish had the poorest performance, requiring the largest slit widths relative to these body dimensions. No consistent patterns in performance were found for silver dollars vs. angelfish. There were no differences among species in the ratio of minimum vertical slit width negotiated to that for horizontal slits, indicating fish were equally able to control posture while swimming on their sides. There were also no consistent patterns in the times taken to transit slits. Although the deep-bodied fish were able to maneuver through smaller slits, the most striking result is the similarity of minimum slit widths traversed in spite of the large variation in body form. Body form and fin plan may be more important for maneuvering and posture control during sub-maximum routine activities.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42638/1/10641_2004_Article_BF00001692.pd

    The evolution of slate microfabrics during progressive accretion of foreland basin sediments

    Get PDF
    Here, we study slate microfabrics from the exhumed accretionary wedge of the central European Alps and focus on the development of foliation. High-resolution micrographs from novel BIB-SEM imaging and Synchrotron X-ray Fluorescence Microscopy are analysed with 2D auto-correlation functions to quantify the geometry and spacing of slate microfabrics along a metamorphic gradient covering the outer and inner wedge (200–330 °C). The sedimentary layering primarily controls the morphology of the slate microfabrics. However, from outer to inner wedge, a fabric evolution is observed where diagenetic foliations gradually transform to secondary continuous and spaced foliations. With increasing metamorphic grade, the amount of recrystallized phyllosilicate grains and their interconnectivity increase, as does clast/microlithon elongation (aspect ratios up to 11), while foliation spacing decreases to 230 °C and accommodates background strain in the inner wedge. The evolving microstructural anisotropy is interpreted to lead to strain weakening by structural softening and may provide preferential fluid pathways parallel to the foliation, enabling the dehydration of large rock volumes in accretionary sediment wedges undergoing prograde metamorphism

    Characterization of the KATRIN cryogenic pumping section

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to determine the effective anti-electron neutrino mass with a sensitivity of 0.2 eV/c2^2 by using the kinematics of tritium ÎČ\beta-decay. It is crucial to have a high signal rate which is achieved by a windowless gaseous tritium source producing 1011^{11} ÎČ\beta-electrons per second. These are guided adiabatically to the spectrometer section where their energy is analyzed. In order to maintain a low background rate below 0.01 cps, one essential criteria is to permanently reduce the flow of neutral tritium molecules between the source and the spectrometer section by at least 14 orders of magnitude. A differential pumping section downstream from the source reduces the tritium flow by seven orders of magnitude, while at least another factor of 107^7 is achieved by the cryogenic pumping section where tritium molecules are adsorbed on an approximately 3 K cold argon frost layer. In this paper, the results of the cryogenic pumping section commissioning measurements using deuterium are discussed. The cryogenic pumping section surpasses the requirement for the flow reduction of 107^7 by more than one order of magnitude. These results verify the predictions of previously published simulations

    Microstructural characterization of natural fractures and faults in the Opalinus Clay: insights from a deep drilling campaign across central northern Switzerland

    Get PDF
    Abstract The Middle-Jurassic Opalinus Clay is the foreseen host rock for radioactive waste disposal in central northern Switzerland. An extensive drilling campaign aiming to characterize the argillaceous formation resulted in a comprehensive drill core data set. The rheologically weak Opalinus Clay is only mildly deformed compared to the over- and underlying rock units but shows a variety of natural fractures. While these structures are hydraulically indistinguishable from macroscopically non-deformed Opalinus Clay today, their analysis allows for a better understanding of the deformation behaviour in the geological past. Here, we present an overview of the different fracture and fault types recorded in the Opalinus Clay and a detailed microstructural characterization of veins—natural dilational fractures healed by secondary calcite and celestite mineralizations. Macroscopic drill core analysis revealed five different natural fracture types that encompass tension gashes of various orientations with respect to bedding and small-scale faults with displacements typically not exceeding the drill core diameter. The occurrence of different fault types generally fits well with the local tectonic setting of the different drilling sites and with respect to the neighbouring regional fault zones. The microstructural investigations of the various vein types revealed their often polyphase character. Fibrous bedding-parallel veins of presumable early age were found to be overprinted by secondary slickenfibres. The polyphase nature of fibrous bedding parallel veins and slickenfibres is supported by differing elemental compositions, pointing towards repeated fracturing and mineralization events. Direct dating of vein calcites with U–Pb was unsuccessful. Nevertheless, age constraints can be inferred from structural orientations and fault slip kinematics. Accordingly, some of the veins already formed during sediment compaction in Mesozoic times, others possibly relate to Early Cenozoic foreland uplift. The youngest veins are most likely related to Late Cenozoic regional tectonic events, such as the Jura fold-and-thrust belt to the south and the Hegau-Lake Constance Graben to the northeast of the study area. During these latest tectonic events, previously formed veins acted as rheologically stiff discontinuities in the otherwise comparably weak Opalinus Clay along which deformation of the rock formation was re-localized

    WELLFOCUS PPT – modified positive psychotherapy to improve well-being in psychosis: study protocol for a pilot randomised controlled trial

    Get PDF
    BACKGROUND: The promotion of well-being is an important goal of recovery oriented mental health services. No structured, evidence-based intervention exists that aims to increase the well-being in people with severe mental illness such as psychosis. Positive psychotherapy (PPT) is a promising intervention for this goal. Standard PPT was adapted for use with people with psychosis in the UK following the Medical Research Council framework for developing and testing complex interventions, resulting in the WELLFOCUS Model describing the intended impact of WELLFOCUS PPT. This study aims to test the WELLFOCUS Model, by piloting the intervention, trial processes, and evaluation strategy. METHODS/DESIGN: This study is a non-blinded pragmatic pilot RCT comparing WELLFOCUS PPT provided as an 11-session group therapy in addition to treatment as usual to treatment as usual alone. Inclusion criteria are adults (aged 18–65 years) with a main diagnosis of psychosis who use mental health services. A target sample of 80 service users with psychosis are recruited from mental health services across the South London and Maudsley NHS Foundation Trust. Participants are randomised in blocks to the intervention and control group. WELLFOCUS PPT is provided to groups by specifically trained and supervised local therapists and members of the research team. Assessments are conducted before randomisation and after the group intervention. The primary outcome measure is well-being assessed by the Warwick-Edinburgh Mental Well-being Scale. Secondary outcomes include good feelings, symptom relief, connectedness, hope, self-worth, empowerment, and meaning. Process evaluation using data collected during the group intervention, post-intervention individual interviews and focus groups with participants, and interviews with trial therapists will complement quantitative outcome data. DISCUSSION: This study will provide data on the feasibility of the intervention and identify necessary adaptations. It will allow optimisation of trial processes and inform the evaluation strategy, including sample size calculation, for a future definitive RCT. TRIAL REGISTRATION: Current Controlled Trials ISRCTN04199273 – WELLFOCUS study: an intervention to improve well-being in people with psychosis, Date registered: 27 March 2013, first participant randomised on 26 April 2013

    The only known cyclopygid–‘atheloptic’ trilobite fauna from North America: the upper Ordovician fauna of the Pyle Mountain Argillite and its palaeoenvironmental significance

    Get PDF
    The trilobite fauna of the upper Ordovician (middle Katian) Pyle Mountain Argillite comprises a mixture of abundant mesopelagic cyclopygids and other pelagic taxa and a benthic fauna dominated by trilobites lacking eyes. Such faunas were widespread in deep water environments around Gondwana and terranes derived from that continent throughout Ordovician time but this is the only known record of such a fauna from North America and thus from Laurentia. It probably reflects a major sea level rise (the ‘Linearis drowning events’) as does the development of coeval cyclopygid-dominated deep water trilobite faunas in terranes that were marginal to Laurentia and are now preserved in Ireland and Scotland. The Pyle Mountain Argillite trilobite fauna occurs with a deep water Foliomena brachiopod fauna and comprises 22 species. Pelagic trilobites (mostly cyclopygids) constitute 36% of the preserved sclerites, and 45% of the fauna is the remains of trilobites lacking eyes, including one new species, Dindymene whittingtoni sp. nov. Three species of cyclopygid are present, belonging in Cyclopyge, Symphysops and Microparia (Heterocyclopyge). Cyclopygids are widely thought to have been stratified in the water column in life and thus their taxonomic diversity reflects the relative depths of the sea-beds on which their remains accumulated. A tabulation of middle and upper Katian cyclopygid-bearing faunas from several palaeoplates and terranes arranged on the basis of increasing numbers of cyclopygid genera allows an assessment of the relative depth ranges of the associated benthic taxa. The Pyle Mountain Argillite fauna lies towards the deeper end of this depth spectrum

    Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: Absence of structural mutations in five patients with brody disease

    Get PDF
    Sarcolipin (SLN) is a low-molecular-weight protein that copurifies with the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Genomic DNA and cDNA encoding human sarcolipin (SLN) were isolated and characterized and the SLN gene was mapped to chromosome 11q22-q23. Human, rabbit, and mouse cDNAs encode a protein of 31 amino acids. Homology of SLN with phospholamban (PLN) suggests that the first 7 hydrophilic amino acids are cytoplasmic, the next 19 hydrophobic amino acids form a single transmembrane helix, and the last 5 hydrophilic amino acids are lumenal. The cytoplasmic and transmembrane sequences are not well conserved among the three species, but the lumenal sequence is highly conserved. Like SERCA1, SLN is highly expressed in rabbit fast-twitch skeletal muscle, but it is expressed to a lower extent in slow-twitch muscle and to an even lower extent in cardiac muscle, where SERCA2a and PLN are highly expressed. It is expressed in only trace amounts in pancreas and prostate. SLN and PLN genes resemble each other in having two small exons, with their entire coding sequences lying in exon 2 and a large intron separating the two segments. Brody disease is an inherited disorder of skeletal muscle function, characterized by exercise-induced impairment of muscle relaxation. Mutations in the ATP2A1 gene encoding SERCA1 have been associated with the autosomal recessive inheritance of Brody disease in three families, but not with autosomal dominant inheritance of the disease. A search for mutations in the SLN gene in five Brody families, four of which were not linked to ATP2A1, did not reveal any alterations in coding, splice junction or promoter sequences. The homozygous deletion of C438 in the coding sequence of ATP2A1 in Brody disease family 3, leading to a frameshift and truncation following Pro147 in SERCA1, is the fourth ATP2A1 mutation to be associated with autosomal recessive Brody disease

    Phylogenetic placement of environmental sequences using taxonomically reliable databases helps to rigorously assess dinophyte biodiversity in Bavarian lakes (Germany).

    Get PDF
    1. Reliable determination of organisms is a prerequisite to explore their spatial and temporal occurrence and to study their evolution, ecology, and dispersal. In Europe, Bavaria (Germany) provides an excellent study system for research on the origin and diversification of freshwater organisms including dinophytes, due to the presence of extensive lake districts and ice age river valleys. Bavarian freshwater environments are ecologically diverse and range from deep nutrient‐poor mountain lakes to shallow nutrient‐rich lakes and ponds. 2. We obtained amplicon sequence data (V4 region of small subunit‐rRNA, c. 410 bp long) from environmental samples collected at 11 sites in Upper Bavaria. We found 186 operational taxonomic units (OTUs) associated with Dinophyceae that were further classified by means of a phylogenetic placement approach. 3. The maximum likelihood tree inferred from a well‐curated reference alignment comprised a systematically representative set of 251 dinophytes, covering the currently known molecular diversity and OTUs linked to type material if possible. Environmental OTUs were scattered across the reference tree, but accumulated mostly in freshwater lineages, with 79% of OTUs placed in either Apocalathium, Ceratium, or Peridinium, the most frequently encountered taxa in Bavaria based on morphology. 4. Twenty‐one Bavarian OTUs showed identical sequences to already known and vouchered accessions, two of which are linked to type material, namely Palatinus apiculatus and Theleodinium calcisporum. Particularly within Peridiniaceae, delimitation of Peridinium species was based on the intraspecific sequence variation. 5. Our approach indicates that high‐throughput sequencing of environmental samples is effective for reliable determination of dinophyte species in Bavarian lakes. We further discuss the importance of well‐curated reference databases that remain to be developed in the future
    • 

    corecore