868 research outputs found

    Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    Get PDF
    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance

    C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors

    Get PDF
    NMDA receptors interact via the extended intracellular C-terminal domain of the NR2 subunits with constituents of the postsynaptic density for purposes of retention, clustering, and functional regulation at central excitatory synapses. To examine the role of the C-terminal domain of NR2A in the synaptic localization and function of NR2A-containing NMDA receptors in hippocampal Schaffer collateral–CA1 pyramidal cell synapses, we analyzed mice which express NR2A only in its C-terminally truncated form. In CA1 cell somata, the levels, activation, and deactivation kinetics of extrasynaptic NMDA receptor channels were comparable in wild-type and mutant NR2A^(ΔC/ΔC) mice. At CA1 cell synapses, however, the truncated receptors were less concentrated than their full-length counterparts, as indicated by immunodetection in cultured neurons, synaptosomes, and postsynaptic densities. In the mutant, the NMDA component of evoked EPSCs was reduced in a developmentally progressing manner and was even more reduced in miniature EPSCs (mEPSCs) elicited by spontaneous glutamate release. Moreover, pharmacologically isolated NMDA currents evoked by synaptic stimulation had longer latencies and displayed slower rise and decay times, even in the presence of an NR2B-specific antagonist. These data strongly suggest that the C-terminal domain of NR2A subunits is important for the precise synaptic arrangement of NMDA receptors

    A room temperature 19-channel magnetic field mapping device for cardiac signals

    Full text link
    We present a multichannel cardiac magnetic field imaging system built in Fribourg from optical double-resonance Cs vapor magnetometers. It consists of 25 individual sensors designed to record magnetic field maps of the beating human heart by simultaneous measurements on a grid of 19 points over the chest. The system is operated as an array of second order gradiometers using sophisticated digitally controlled feedback loops.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter

    Observing the Symmetry of Attractors

    Full text link
    We show how the symmetry of attractors of equivariant dynamical systems can be observed by equivariant projections of the phase space. Equivariant projections have long been used, but they can give misleading results if used improperly and have been considered untrustworthy. We find conditions under which an equivariant projection generically shows the correct symmetry of the attractor.Comment: 28 page LaTeX document with 9 ps figures included. Supplementary color figures available at http://odin.math.nau.edu/~jws

    Thermoacoustically driven flame motion and heat release variation in a swirl-stabilized gas turbine burner investigated by LIF and chemiluminescence

    Get PDF
    Laser-induced fluorescence and chemiluminescence, both phase-locked to the dominant acoustic oscillation, are used to investigate phenomena related to thermoacoustic instability in a swirl-stabilized industrial scale gas turbine burner. The observed sinusoidal phase-averaged flame motion in axial (main flow) direction is analyzed using different schemes for defining the flame position. Qualitative agreement between experimental data and theoretical analysis of the observed flame motion is obtained, interpreted as originating primarily from variation of the burning velocity. The heat release variation during an acoustic cycle is determined from the sinusoidally varying total OH* chemiluminescence intensit

    Combining Information from Two Surveys to Estimate County-Level Prevalence Rates of Cancer Risk Factors and Screening

    Get PDF
    Cancer surveillance requires estimates of the prevalence of cancer risk factors and screening for small areas such as counties. Two popular data sources are the Behavioral Risk Factor Surveillance System (BRFSS), a telephone survey conducted by state agencies, and the National Health Interview Survey (NHIS), an area probability sample survey conducted through face-to-face interviews. Both data sources have advantages and disadvantages. The BRFSS is a larger survey, and almost every county is included in the survey; but it has lower response rates as is typical with telephone surveys, and it does not include subjects who live in households with no telephones. On the other hand, the NHIS is a smaller survey, with the majority of counties not included; but it includes both telephone and non-telephone households and has higher response rates. A preliminary analysis shows that the distributions of cancer screening and risk factors are different for telephone and non-telephone households. Thus, information from the two surveys may be combined to address both nonresponse and noncoverage errors. A hierarchical Bayesian approach that combines information from both surveys is used to construct county-level estimates. The proposed model incorporates potential noncoverage and nonresponse biases in the BRFSS as well as complex sample design features of both surveys. A Markov Chain Monte Carlo method is used to simulate draws from the joint posterior distribution of unknown quantities in the model based on the design-based direct estimates and county-level covariates. Yearly prevalence estimates at the county level for 49 states, as well as for the entire state of Alaska and the District of Columbia, are developed for six outcomes using BRFSS and NHIS data from the years 1997-2000. The outcomes include smoking and use of common cancer screening procedures. The NHIS/BRFSS combined county-level estimates are substantially different from those based on BRFSS alone

    Evaluation of health effects of air pollution in the Chestnut Ridge area : preliminary analysis

    Get PDF
    This project involves several tasks designed to take advantage of (1) a very extensive air pollution monitoring system that is operating ..n the Chestnut Ridge.region of Western Pennsylvania and (2) -the very well developed analytic dispersion models that have been previously fine-tuned to this particular area.. The major task in this project is to establish, through several distinct epidemiolopic approaches, health data to be used to test hypotheses about relations of air pollution exposures to morbidity and mortality rates in this region. Because the air quality monitoring network involves no expense to this contract this project affords a very cost-effective 6pportunity-for state-of-the-art techniques to be used in both costly areas of air pollution and health -effects data col1 ection. . The closely spaced network of monitors, plus the dispersion modeling capabilities,.allow for the investigation- of health impacts of. various pollutant gradients in neighboring geographic areas, thus minimizing -the confounding effects of social, ethnic, and economic factors. The pollutants that are monitored in this network include total gaseous sulfur, sulfates, total suspended particulates, NOx, NO, ozone/oxidants, and coefficient of haze. In addition to enabling the simulation of exposure profiles between monitors, the air quality2 modeling, along with extensive source and background inventories, will allow for upgrading the quality of the monitored data. as well as simulating the exposure levels for about 25 additional air pollutants. Another important goal of this project is to collect and test the many available models for associating.health effects with air pollution, to determine their predictive validity and their usefulness in the choice and siting of future energy facilities

    Entanglement-free Heisenberg-limited phase estimation

    Get PDF
    Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio

    Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

    Full text link
    We consider Hermitian and symmetric random band matrices HH in d≥1d \geq 1 dimensions. The matrix elements HxyH_{xy}, indexed by x,y∈Λ⊂Zdx,y \in \Lambda \subset \Z^d, are independent, uniformly distributed random variables if \abs{x-y} is less than the band width WW, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian HH is diffusive on time scales t≪Wd/3t\ll W^{d/3}. We also show that the localization length of an arbitrarily large majority of the eigenvectors is larger than a factor Wd/6W^{d/6} times the band width. All results are uniform in the size \abs{\Lambda} of the matrix.Comment: Minor corrections, Sections 4 and 11 update

    The White Dwarf in AE Aqr Brakes Harder

    Full text link
    Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA, XMMN, and Chandra X-ray observations spread over 10 yrs; and a cumulative 27 yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with Pdouble_dot = 3.46(56)E-19 per d, which is inconsistent in sign and magnitude with magnetic-dipole radiation losses, or an additional quadratic term with Pdot = 2.0(1.0)E-15 d/d, which is consistent with a modest increase in the accretion torques spinning down the white dwarf. Regular monitoring, in the optical, ultraviolet, and/or X-rays, is required to track the evolution of the spin period of the white dwarf in AE Aqr.Comment: 5 pages including 2 tables and 3 encapsulated postscript figures; LaTeX format, uses mn2e.cls; accepted on 2006 April 13 for publication in Monthly Notices of the Royal Astronomical Societ
    • …
    corecore