21,300 research outputs found

    Effects of heat input rates on T-1 and T-1A steel welds

    Get PDF
    Technology of T-1 and T-1A steels is emphasized in investigation of their weld-fabrication. Welding heat input rate, production weldment circumstances, and standards of welding control are considered

    Mesoscopic dynamical differences from quantum state preparation in a Bose-Hubbard trimer

    Full text link
    Conventional wisdom is that quantum effects will tend to disappear as the number of quanta in a system increases, and the evolution of a system will become closer to that described by mean field classical equations. In this letter we combine newly developed experimental techniques to propose and analyse an experiment using a Bose-Hubbard trimer where the opposite is the case. We find that differences in the preparation of a centrally evacuated trimer can lead to readily observable differences in the subsequent dynamics which increase with system size. Importantly, these differences can be detected by the simple measurements of atomic number.Comment: 5 pages, 4 figures, theor

    Asymmetric Gaussian steering: when Alice and Bob disagree

    Full text link
    Asymmetric steering is an effect whereby an inseparable bipartite system can be found to be described by either quantum mechanics or local hidden variable theories depending on which one of Alice or Bob makes the required measurements. We show that, even with an inseparable bipartite system, situations can arise where Gaussian measurements on one half are not sufficient to answer the fundamental question of which theory gives an adequate description and the whole system must be considered. This phenomenon is possible because of an asymmetry in the definition of the original Einstein-Podolsky-Rosen paradox and in this article we show theoretically that it may be demonstrated, at least in the case where Alice and Bob can only make Gaussian measurements, using the intracavity nonlinear coupler.Comment: 5 Pages, 4 Figure

    Generating controllable atom-light entanglement with a Raman atom laser system

    Full text link
    We introduce a scheme for creating continuous variable entanglement between an atomic beam and an optical field, by using squeezed light to outcouple atoms from a BEC via a Raman transition. We model the full multimode dynamics of the atom laser beam and the squeezed optical field, and show that with appropriate two-photon detuning and two-photon Rabi frequency, the transmitted light is entangled in amplitude and phase with the outcoupled atom laser beam. The degree of entanglement is controllable via changes in the two-photon Rabi frequency of the outcoupling process.Comment: 4 pages, 4 figure

    Heat and extension at mid- and lower crustal levels of the Rio Grande rift

    Get PDF
    The process by which large amounts (50 to 200 percent) of crustal extension are produced was concisely described by W. Hamilton in 1982 and 1983. More recently, England, Sawyer, P. Morgan and others have moved toward quantifying models of lithospheric thinning by incorporating laboratory and theoretical data on rock rheology as a function of composition, temperature, and strain rate. Hamilton's description identifies three main crustal layers, each with a distinctive mechanical behavior; brittle fracturing and rotation in the upper crust, discontinuous ductile flow in the middle crust and laminar ductile flow in the lower crust. The temperature and composition dependent brittle-ductile transition essentially defines the diffuse boundary between upper and middle crust. It was concluded that the heat responsible for the highly ductile nature of the lower crust and the lensoidal and magma body structures at mid-crustal depths in the rift was infused into the crust by relatively modest ( 10 percent by mass) magmatic upwelling (feeder dikes) from Moho levels. Seismic velocity-versus-depth data, supported by gravity modeling and the fact that volumes of rift related volcanics are relatively modest ( 6000 cubic km) for the Rio Grande system, all imply velocities and densities too small to be consistent with a massive, composite, mafic intrusion in the lower crust

    Quadripartite continuous-variable entanglement via quadruply concurrent downconversion

    Get PDF
    We investigate an intra-cavity coupled down-conversion scheme to generate quadripartite entanglement using concurrently resonant nonlinearities. We verify that quadripartite entanglement is present in this system by calculating the output fluctuation spectra and then considering violations of optimized inequalities of the van Loock-Furusawa type. The entanglement characteristics both above and below the oscillation threshold are considered. We also present analytic solutions for the quadrature operators and the van Loock-Furusawa correlations in the undepleted pump approximation.Comment: 9 pages, 5 figure

    Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    Get PDF
    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters

    Defect Tolerant Monolayer Transition Metal Dichalcogenides

    Get PDF
    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with lower tendency to form defect induced deep gap states are termed defect tolerant. Here we provide a systematic first principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy while the TMDs based on group IV metals form only shallow defect levels and are thus predicted to be defect tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with very similar orbital composition. This indicates a bonding/anti-bonding nature of the gap which in turn suggests that dangling bonds will fall inside the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to non-polar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within the band gap

    Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation

    Get PDF
    The process of cascaded downconversion and sum-frequency generation inside an optical cavity has been predicted to be a potential source of three-mode continuous-variable entanglement. When the cavity is pumped by two fields, the threshold properties have been analysed, showing that these are more complicated than in well-known processes such as optical parametric oscillation. When there is only a single pumping field, the entanglement properties have been calculated using a linearised fluctuation analysis, but without any consideration of the threshold properties or critical operating points of the system. In this work we extend this analysis to demonstrate that the singly pumped system demonstrates a rich range of threshold behaviour when quantisation of the pump field is taken into account and that asymmetric polychromatic entanglement is available over a wide range of operational parameters.Comment: 24 pages, 15 figure

    Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    Get PDF
    We examine the feasibility of generating continuous-variable multipartite entanglement in an intra-cavity quadruply concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci \textit{et al.} [Physical Review Letters \textbf{101}, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.Comment: 26 pages, 12 figure
    • …
    corecore