969 research outputs found

    Procedure for noise prediction and optimization of advanced technology propellers

    Get PDF
    The sound field due to a propeller operating at supersonic tip speed in a uniform flow was investigated. Using the fact that the wave front in a uniform stream is a convected sphere, the fundamental solution to the convected wave equation was easily obtained. The Fourier coefficients of the pressure signature were obtained by a far field approximation, and are expressed as an integral over the blade platform. It is shown that cones of silence exist fore and aft the propeller plane. The semiapex angles are shown. These angles are independent of the individual Mach components such as the flight Mach number and the rotation Mach number. The result is confirmed by the computation of the ray path of the emitted Mach waves. The Doppler amplification factor strengthens the signal behind the propeller while it weakens that upstream

    Millimeter-wave diode-grid phase shifters

    Get PDF
    Monolithic diode grids have been fabricated on 2-cm square gallium-arsenide wafers with 1600 Schottky-barrier varactor diodes. Shorted diodes are detected with a liquid-crystal technique, and the bad diodes are removed with an ultrasonic probe. A small-aperture reflectometer that uses wavefront division interference was developed to measure the reflection coefficient of the grids. A Phase shift of 70° with a 7-dB loss was obtained at 93 GHz when the bias on the diode grid was changed from -3 V to 1 V. A simple transmission-line grid model, together with the measured low-frequency parameters for the diodes, was shown to predict the measured performance over the entire capacitive bias range of the diodes, as well as over the complete reactive tuning range provided by a reflector behind the grid, and over a wide range of frequencies form 33 GHz to 141 GHz. This shows that the transmission-line model and the measured low-frequency diode parameters can be used to design an electronic beam-steering array and to predict its performance. An electronic beam-steering array made of a pair of grids using state-of-the-art diodes with 5-Ω series resistances would have a loss of 1.4 dB at 90 GHz

    Millimeter-Wave Diode-Grid Frequency Doubler

    Get PDF
    Monolithic diode grid were fabricated on 2-cm^2 gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5% and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 Ω, the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage

    Diffuse-interface model for rapid phase transformations in nonequilibrium systems

    Get PDF
    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe the transformation within the diffuse interface, we use the phase-field model which allows us to follow the steep but smooth change of phases within the width of diffuse interface. The governing equations of the phase-field model are derived for the hyperbolic model, model with memory, and for a model of nonlinear evolution of transformation within the diffuse-interface. The consistency of the model is proved by the condition of positive entropy production and by the outcomes of the fluctuation-dissipation theorem. A comparison with the existing sharp-interface and diffuse-interface versions of the model is given.Comment: 15 pages, regular article submitted to Physical Review

    The delayed uncoupled continuous-time random walks do not provide a model for the telegraph equation

    Full text link
    It has been alleged in several papers that the so called delayed continuous-time random walks (DCTRWs) provide a model for the one-dimensional telegraph equation at microscopic level. This conclusion, being widespread now, is strange, since the telegraph equation describes phenomena with finite propagation speed, while the velocity of the motion of particles in the DCTRWs is infinite. In this paper we investigate how accurate are the approximations to the DCTRWs provided by the telegraph equation. We show that the diffusion equation, being the correct limit of the DCTRWs, gives better approximations in L2L_2 norm to the DCTRWs than the telegraph equation. We conclude therefore that, first, the DCTRWs do not provide any correct microscopic interpretation of the one-dimensional telegraph equation, and second, the kinetic (exact) model of the telegraph equation is different from the model based on the DCTRWs.Comment: 12 pages, 9 figure

    Stability of inflationary solutions driven by a changing dissipative fluid

    Get PDF
    In this paper the second Lyapunov method is used to study the stability of the de Sitter phase of cosmic expansion when the source of the gravitational field is a viscous fluid. Different inflationary scenarios related with reheating and decay of mini-blackholes into radiation are investigated using an effective fluid described by time--varying thermodynamical quantities.Comment: 17 pages, LaTeX 2.09, 2 figures. To be published in Classical and Quantum Gravit

    Cosmological solutions with nonlinear bulk viscosity

    Get PDF
    A recently proposed nonlinear transport equation is used to model bulk viscous cosmologies that may be far from equilibrium, as happens during viscous fluid inflation or during reheating. The asymptotic stability of the de Sitter and Friedmann solutions is investigated. The former is stable for bulk viscosity index q1q1. New solutions are obtained in the weakly nonlinear regime for q=1q=1. These solutions are singular and some of them represent a late-time inflationary era.Comment: 16 pages Latex (IOP style); to appear Class. Quantum Gra

    Attenuation and damping of electromagnetic fields: Influence of inertia and displacement current

    Full text link
    New results for attenuation and damping of electromagnetic fields in rigid conducting media are derived under the conjugate influence of inertia due to charge carriers and displacement current. Inertial effects are described by a relaxation time for the current density in the realm of an extended Ohm's law. The classical notions of poor and good conductors are rediscussed on the basis of an effective electric conductivity, depending on both wave frequency and relaxation time. It is found that the attenuation for good conductors at high frequencies depends solely on the relaxation time. This means that the penetration depth saturates to a minimum value at sufficiently high frequencies. It is also shown that the actions of inertia and displacement current on damping of magnetic fields are opposite to each other. That could explain why the classical decay time of magnetic fields scales approximately as the diffusion time. At very small length scales, the decay time could be given either by the relaxation time or by a fraction of the diffusion time, depending whether inertia or displacement current, respectively, would prevail on magnetic diffusion.Comment: 21 pages, 1 figur

    Temperature Evolution Law of Imperfect Relativistic Fluids

    Full text link
    The first-order general relativistic theory of a generic dissipative (heat-conducting, viscous, particle-creating) fluid is rediscussed from a unified covariant frame-independent point of view. By generalizing some previous works in the literature, we derive a formula for the temperature variation rate, which is valid both in Eckart's (particle) and in the Landau-Lifshitz (energy) frames. Particular attention is paid to the case of gravitational particle creation and its possible cross-effect with the bulk viscosity mechanism.Comment: 14 pages, no figure, revte

    Why hyperbolic theories of dissipation cannot be ignored: Comments on a paper by Kostadt and Liu

    Get PDF
    Contrary to what is asserted in a recent paper by Kostadt and Liu ("Causality and stability of the relativistic diffusion equation"), experiments can tell apart (and in fact do) hyperbolic theories from parabolic theories of dissipation. It is stressed that the existence of a non--negligible relaxation time does not imply for the system to be out of the hydrodynamic regime.Comment: 8 pages Latex, to appear in Phys.Rev.
    • 

    corecore