378 research outputs found

    Caspase-Cleaved Glial Fibrillary Acidic Protein Within Cerebellar White Matter of the Alzheimer\u27s Disease Brain

    Get PDF
    Although the cerebellum is generally thought of as an area spared of Alzheimer\u27s disease (AD) pathology, recent evidence suggests that balance and mobility dysfunction may be magnified in affected individuals. In the present study, we sought to determine the degree of pathological changes within the cerebellum utilizing an antibody that specifically detects caspase-cleaved GFAP within degenerating astrocytes. Compared to control subjects, application of this antibody, termed the GFAP caspase-cleavage product (GFAPccp) antibody, revealed widespread labeling in cerebellar white matter with little staining observed in grey matter. Staining was observed within damaged astrocytes, was often localized near blood vessels and co-localized with other markers of apoptosis including TUNEL and caspase-cleaved tau. Of interest was the association of beta-amyloid deposition in white matter together with GFAPccp in cerebellar AD sections. In contrast, utilizing the tangle marker, PHF-1, neuritic pathology was completely absent in AD cerebellar sections. It is suggested that the observed pathological changes found in the white matter of the cerebellum may contribute to the declined motor performance in AD

    Identification of an Amino-Terminal Fragment of Apolipoprotein E4 that Localizes to Neurofibrillary Tangles of the Alzheimer’s Disease Brain

    Get PDF
    Although the risk factor for harboring the apolipoprotein E4 (apoE4) allele in late-onset Alzheimer’s disease (AD) is well known, the mechanism by which apoE4 contributes to AD pathogenesis has yet to be clarified. Preferential cleavage of the ApoE4 isoform relative to other polymorphic forms appears to be significant, as the resulting fragments are associated with hallmarks of AD. To examine the possible role of apoE4 proteolysis in AD, we designed a site-directed antibody directed at position D172, which would yield a predicted amino-terminal fragment previously identified in AD brain extracts. Western blot analysis utilizing this novel antibody, termed the amino-terminal apoE4 cleavage fragment (nApoE4CF) Ab consistently identified the predicted amino-terminal fragment (~18 kDa) in several commercially available forms of human recombinant apoE4 purified from E. coli. Mass spectrometry confirmed the identity of this 18 kDa fragment as being an amino-terminal fragment of apoE4. Immunohistochemical experiments indicated the nApoE4CF Ab specifically labeled neurofibrillary tangles (NFTs) in AD frontal cortex sections that colocalized with the mature tangle marker PHF-1. Taken together, these results suggest a novel cleavage event of apoE4, generating an amino-terminal fragment that localizes within NFTs of the AD brain

    UV-B induced changes of phenol composition and antioxidant activity in black currant fruit (Ribes nigrum L.)

    Get PDF
    Information on UV-B elicitor mediated changes on phenolic composition and antioxidant activity of black currant (Ribes nigrum L.) are scanty. In the present study physiological ripe black currant fruits were harvested and exposed to UV-B radiation with different exposure and adaptation times. The influence of UV-B on phenolic profile and quantitative composition as well as on the corresponding antioxidant activity was investigated. Antioxidant activity was screened with electron spin resonance spectrometry (ESR), while phenolic compound composition was conducted by HPLC analysis. Total phenol content and phenolic composition (flavonols, anthocyanins, hydroxycinnamic and hydroxybenzoic acids) increased to a large extent during UV-B treatment, irrespective of the adaptation time. Anthocyanins are concluded to absorb UV radiation within a short time, meanwhile flavonols and phenolic acids are assumed to have an impact on antioxidant protection of UV-B mediated tissue damage. Moreover, antioxidant activity significantly correlated with different phenolic compounds and increased to a similar extent by UV-B exposure

    Influence of location and fertilization on antioxidant acitivity in highbush blueberries (Vaccinium corymbosum L.)

    Get PDF
    Highbush blueberry cultivars ‘Bluecrop’ and ‘Reka’ were growing in two variants of mulching and fertilizing systems on formerly used farmland. Fruits were harvested at two picking dates and analyzed for their content of phenolic compounds and antioxidant activity. These data were compared with samples of two forest soil locations from the Brandenburg region (Beelitz and Klaistow). The results showed significant differences between cultivars, both harvest times and different locations. The variations in fertilization and ground cover (with or without mulch) showed significant differences. Moreover, it is demonstrated that without ground cover and commercial fertilization higher contents of total phenolic compounds and an increase in antioxidant activity tendentiously occurred. This result paralleled the decline in vegetative growth and was associated with drought stress

    Caspase-Cleaved Tau Co-Localizes with Early Tangle Markers in the Human Vascular Dementia Brain

    Get PDF
    Vascular dementia (VaD) is the second most common form of dementia in the United States and is characterized as a cerebral vessel vascular disease that leads to ischemic episodes. Whereas the relationship between caspase-cleaved tau and neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD) has been previously described, whether caspase activation and cleavage of tau occurs in VaD is presently unknown. To investigate a potential role for caspase-cleaved tau in VaD, we analyzed seven confirmed cases of VaD by immunohistochemistry utilizing a well-characterized antibody that specifically detects caspase-cleaved tau truncated at Asp421. Application of this antibody (TauC3) revealed consistent labeling within NFTs, dystrophic neurites within plaque-rich regions and corpora amylacea (CA) in the human VaD brain. Labeling of CA by the TauC3 antibody was widespread throughout the hippocampus proper, was significantly higher compared to age matched controls, and co-localized with ubiquitin. Staining of the TauC3 antibody co-localized with MC-1, AT8, and PHF-1 within NFTs. Quantitative analysis indicated that roughly 90% of PHF-1-labeled NFTs contained caspase-cleaved tau. In addition, we documented the presence of active caspase-3 within plaques, blood vessels and pretangle neurons that co-localized with TauC3. Collectively, these data support a role for the activation of caspase-3 and proteolytic cleavage of TauC3 in VaD providing further support for the involvement of this family of proteases in NFT pathology

    Conceptual Design of the Space Station Fluids Module

    Get PDF
    The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway

    Apolipoprotein E Pathology in Vascular Dementia

    Get PDF
    Vascular dementia (VaD) is the second most common form of dementia and is currently defined as a cerebral vessel vascular disease leading to ischemic episodes. Apolipoprotein E (apoE) gene polymorphism has been proposed as a risk factor for VaD, however, to date there are few documented post-mortem studies on apoE pathology in the VaD brain. To investigate a potential role for the apoE protein, we analyzed seven confirmed cases of VaD by immunohistochemistry utilizing an antibody that specifically detects the amino-terminal fragment of apoE. Application of this antibody, termed N-terminal, apoE cleavage fragment (nApoECF) revealed consistent labeling within neurofibrillary tangles (NFTs), blood vessels, and reactive astrocytes. Labeling occurred in VaD cases that had confirmed APOE genotypes of 3/3, 3/4, and 4/4, with respect to NFTs, staining of the nApoECF co-localized with PHF-1 and was predominantly localized to large, stellate neurons in layer II of the entorhinal cortex. Quantitative analysis indicated that approximately 38.4% of all identified NFTs contained the amino-terminal fragment of apoE. Collectively, these data support a role for the proteolytic cleavage of apoE in the VaD and support previous reports that APOE polymorphism is significantly associated with susceptibility in this disease

    Immunolocalization of an Amino-Terminal Fragment of Apolipoprotein E in the Pick\u27s Disease Brain

    Get PDF
    Although the risk factor for apolipoprotein E (apoE) polymorphism in Alzheimer\u27s disease (AD) has been well described, the role that apoE plays in other neurodegenerative diseases, including Pick\u27s disease, is not well established. To examine a possible role of apoE in Pick\u27s disease, an immunohistochemical analysis was performed utilizing a novel site-directed antibody that is specific for an amino-terminal fragment of apoE. Application of this antibody, termed the amino-terminal apoE cleavage fragment (nApoECF) antibody, consistently labeled Pick bodies within area CA1 of the hippocampus in 4 of the 5 cases examined. Co-localization of the nApoECF antibody with PHF-1, a general marker for Pick bodies, as well as with an antibody to caspase-cleaved tau (TauC3) was evident within the hippocampus. While staining of the nApoECF antibody was robust in area CA1, little co-localization with PHF-1 in Pick bodies within the dentate gyrus was observed. A quantitative analysis indicated that approximately 86% of the Pick bodies identified in area CA1 labeled with the nApoECF antibody. The presence of truncated apoE within Pick bodies suggests a broader role of apoE beyond AD and raises the question as to whether this protein contributes to pathogenesis associated with Pick\u27s disease

    Novel antibiotic-loaded particles conferring eradication of deep tissue bacterial reservoirs for the treatment of chronic urinary tract infection

    Get PDF
    A significant proportion of urinary tract infection (UTI) patients experience recurrent episodes, due to deep tissue infection and treatment-resistant bacterial reservoirs. Direct bladder instillation of antibiotics has proved disappointing in treating UTI, likely due to the failure of infused antibiotics to penetrate the bladder epithelium and accumulate to high enough levels to kill intracellular bacteria. This work investigates the use of nitrofurantoin loaded poly(lactic-co-glycolic acid) (PLGA) particles to improve delivery to intracellular targets for the treatment of chronic UTI. Using electrohydrodynamic atomisation, we produced particles with an average diameter of 2.8 μm. In broth culture experiments, the biodegradable particles were effective against a number of UTI-relevant bacterial strains. Dye-loaded particles demonstrated that intracellular delivery was achieved in all cells in 2D cultures of a human bladder epithelial progenitor cell line in a dose-dependent manner, achieving far higher efficiency and concentration than equivalent quantities of free drug. Time-lapse video microscopy confirmed that delivery occurred within 30 min of administration, to 100% of cells. Moreover, the particles were able to deliver the drug to cells through multiple layers of a 3D human bladder organoid model causing minimal cell toxicity, displaying superior killing of bacterial reservoirs harboured within bladder cells compared with unencapsulated drug. The particles were also able to kill bacterial biofilms more effectively than the free drug. These results illustrate the potential for using antibiotic-loaded microparticles to effectively treat chronic UTIs. Such a delivery method could be extrapolated to other clinical indications where robust intracellular delivery is required, such as oncology and gene therapy
    • …
    corecore