471 research outputs found

    Magneto-optics in pure and defective Ga_{1-x}Mn_xAs from first-principles

    Full text link
    The magneto-optical properties of Ga1−x_{1-x}Mnx_{x}As including their most common defects were investigated with precise first--principles density-functional FLAPW calculations in order to: {\em i}) elucidate the origin of the features in the Kerr spectra in terms of the underlying electronic structure; {\em ii}) perform an accurate comparison with experiments; and {\em iii}) understand the role of the Mn concentration and occupied sites in shaping the spectra. In the substitutional case, our results show that most of the features have an interband origin and are only slightly affected by Drude--like contributions, even at low photon energies. While not strongly affected by the Mn concentration for the intermediately diluted range (x∼x\sim 10%), the Kerr factor shows a marked minimum (up to 1.5o^o) occurring at a photon energy of ∼\sim 0.5 eV. For interstitial Mn, the calculated results bear a striking resemblance to the experimental spectra, pointing to the comparison between simulated and experimental Kerr angles as a valid tool to distinguish different defects in the diluted magnetic semiconductors framework.Comment: 10 pages including 2 figures, submitted to Phys. Rev.

    Ultrafast Magneto-Acoustics in Nickel Films

    Full text link
    We report about the existence of magneto-acoustic pulses propagating in a 200-nm-thick ferromagnetic nickel film excited with 120 fs laser pulses. They result from the coupling between the magnetization of the ferromagnetic film and the longitudinal acoustic waves associated to the propagation of the lattice deformation induced by the femtosecond laser pulses. The magneto-acoustic pulses are detected from both the front and back sides of the film, using the time-resolved magneto-optical Kerr technique, measuring both the time dependent rotation and ellipticity. We show that the propagating acoustic pulse couples efficiently to the magnetization and is strong enough to induce a precession of the magnetization. It is due to a transient change of the crystalline anisotropy associated to the lattice deformation. It is shown that the results can be interpreted by combining the concepts of acoustic pulse propagation and ultrafast magnetization dynamics.Comment: 4 pages, 3 figures, Submitted to Physical Review Letters on November 30th 201

    The origin of the 90 degree magneto-optical Kerr rotation in CeSb

    Full text link
    We calculate the linear magneto-optical Kerr rotation for CeSb in the near-infrared spectral range. Using an exact formula for large Kerr rotation angles and a simplified electronic structure of CeSb we find at \hbar \omega = 0.46 eV a Kerr rotation of 90 degree which then for decreasing \omega jumps to -90 degree as recently observed. We identify the general origin of possible 180 degree polarization rotations as resulting from mainly nonmagnetic optical properties, in particular from the ratio of the dominant interband resonance frequency to the plasma frequency. The dependence of the Kerr rotation on moments and magnetization is discussed.Comment: 6 pages, REVTEX, 5 eps figure

    A Simple Empirical Calibration of Energy Dispersive X-Ray Analysis (EDXA) on the Cornea

    Get PDF
    Monitoring of the corneal electrolyte content is important for the study of chemical eye burns. This paper describes quantitative measurements on gelatin standards, corneas and a cornea homogenate with an energy dispersive X-ray analyzer (EDX) in the scanning electron microscope (SEM). Ten micrometers thick cryosections were freeze-dried and mounted on solid carbon supports. The applied quantification procedure was a local peak background analysis with a specifically designed computer program. Similar chemical and physical properties of gelatin, cornea homogenate, and cornea were proven by EDX-analysis and wet chemical analysis. Gelatin standards with known concentrations of different added salts showed linear correlations with a correlation coefficient higher than 0.95 for all considered elements. The local background generation on carbon supports was the same for gelatin standards and corneal tissue. The results demonstrate that quantitative EDX analysis of semi-thin samples, mounted on neutral carbon supports, can be reliably used for the assessment of the corneal mineral composition

    Carrier-Induced Magnetic Circular Dichloism in the Magnetoresistive Pyrochlore Tl2Mn2O7

    Full text link
    Infrared magnetic circular dichloism (MCD), or equivalently magneto-optical Kerr effect, has been measured on the Tl2Mn2O7 pyrochlore, which is well known for exhibiting a large magnetoresistance around the Curie temperature T_C ~ 120 K. A circularly polarized, infrared synchrotron radiation is used as the light source. A pronounced MCD signal is observed exactly at the plasma edge of the reflectivity near and below T_c. However, contrary to the conventional behavior of MCD for ferromagnets, the observed MCD of Tl2Mn2O7 grows with the applied magnetic field, and not scaled with the internal magnetization. It is shown that these results can be basically understood in terms of a classical magnetoplasma resonance. The absence of a magnetization-scaled MCD indicates a weak spin-orbit coupling of the carriers in Tl2Mn2O7. We discuss the present results in terms of the microscopic electronic structures of Tl2Mn2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information

    Spin-dependent transport in metal/semiconductor tunnel junctions

    Get PDF
    This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate spin-polarized carriers. A transport model is presented that takes account of carrier capture in the semiconductor surface states, and describes the semiconductor surface in terms of a spin-dependent energy distribution function. The so-called surface spin-splitting can be calculated from the balance of the polarized electron and hole flow in the semiconductor subsurface region, the polarized tunnelling current across the tunnel barrier between the magnetic material and the semiconductor surface, and the spin relaxation at the semiconductor surface. Measurements are presented of the circular-polarization-dependent photocurrent (the so-called helicity asymmetry) in thin-film tunnel junctions of Co/Al2O3/GaAs. In the absence of a tunnel barrier, the helicity asymmetry is caused by magneto-optical effects (magnetic circular dichroism). In the case where a tunnel barrier is present, the data cannot be explained by magneto-optical effects alone; the deviations provide evidence that spin-polarized tunnelling due to optical spin orientation occurs. In Co/Ï„-MnAl/AlAs/GaAs junctions no deviations from the magneto-optical effects are observed, most probably due to the weak spin polarization of Ï„-MnAl along the tunnelling direction; the latter is corroborated by bandstructure calculations. Finally, the application of photoexcited GaAs for spin-polarized tunnelling in a scanning tunnelling microscope is discussed.

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass

    Full text link
    The fluctuation-dissipation theorem (FDT), connecting dielectric susceptibility and polarization noise was studied in glycerol below its glass transition temperature Tg. Weak FDT violations were observed after a quench from just above to just below Tg, for frequencies above the alpha peak. Violations persisted up to 10^5 times the thermal equilibration time of the configurational degrees of freedom under study, but comparable to the average relaxation time of the material. These results suggest that excess energy flows from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4 pages, 5 PS figures, RevTe
    • …
    corecore