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A chiral spin liquid state is discovered in the highly frustrated, noncentrosymmetric swedenborgite
compound YBaCo3FeO7, a layered kagome system of hexagonal symmetry, by advanced polarized neutron
scattering from a single domain crystalline sample. The observed diffuse magnetic neutron scattering has an
antisymmetric property that relates to its specific chirality, which consists of three cycloidal waves
perpendicular to the c axis, forming an entity of cylindrical symmetry. Chirality and symmetry agree with
relevant antisymmetric exchanges arising from broken spatial parity. Applying a Fourier analysis to the chiral
interference pattern, with distinction between kagome sites and the connecting trigonal interlayer sites of
threefold symmetry, the chiral spin correlation function is determined. Characteristic chiral waves originate
from the trigonal sites and extend over several periods in the kagome planes. The chiral spin liquid is
remarkably stable at low temperatures despite strong antiferromagnetic spin exchange. The observation raises
a challenge, since the commonly accepted ground states in condensed matter either have crystalline long-
range order or form a quantum liquid. We show that, within the classical theory of magnetic order, a
disordered ground state may arise from chirality. The present scenario, with antisymmetric exchange acting as
a frustrating gauge background that stabilizes local spin lumps, is similar to the avoided phase transition in
coupled gauge and matter fields for subnuclear particles.

DOI: 10.1103/PhysRevX.12.021029 Subject Areas: Condensed Matter Physics
Magnetism

I. INTRODUCTION

Spin liquids do not display a regular magnetic order
at temperatures below the energy scale of relevant inter-
actions; geometric frustration, competing interactions, and
low dimensionality are common reasons for their apparent
lack of order and their richness of exotic properties [1–3].
The combination of frustration and strongly interacting
spins creates a common feature of spin liquids, highly
correlated spin configurations on a finite length scale and
these in astonishing diversity. While the term spin liquid is
used in various contexts, a thermodynamic definition

implies a state not different from the paramagnetic
high-temperature state. Typically, one finds a competition,
where couplings allow for several spin orders to coexist.
From these degenerate primary modes a distinct ground
state is selected, either by an entropic mechanism follow-
ing the “order by disorder” principle [4] or by weaker
magnetic coupling terms, e.g., longer-range exchange or
anisotropies. In a three-dimensional magnetic system
close to the ground state, spin ordering eventually sets
in, either through a classical second-order phase transition
or due to hidden multipolar ordering [5], e.g., as the loop
order in the garnet Gd3Ga5O12 [6]. There are exceptions to
this, like the spin freezing in spin ice that falls out of
equilibrium and avoids the expected, regularly ordered
ground state [7]. A mimicry of a spin liquid state and a
disordered ground state in YbMgGaO4 [8] is proposed to
follow from a background of charge fluctuation disorder.
The role of a disordered background seems a convenient
speculation to explain a few specific disordered low-
temperature spin systems.
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Advanced polarized diffuse neutron scattering sheds new
light on a disordered, but strongly interacting spin system.
The experiment reveals strong chirality in the spin corre-
lations of the spin liquid YBaCo3FeO7, which suggests an
alternative route to an amorphous state. Our theoretical
analysis shows that long-range spin ordering can be
impeded, even in clean magnetic systems, if a set of
coexisting spin patterns interacts and is twisted into
extended textures. The specific mechanism for this type
of frustration derives from antisymmetric exchange cou-
plings and exists in crystals where spatial parity is broken.
We propose a generic description of the cooperative spin
modes in such a magnetic system that includes a frustrating
gauge background and enforces the twisting of spin
patterns and generates localized lumps, detected as chiral
short-range spin order. These chiral lumps condense into an
amorphous state of chiral solitonlike configurations. The
prediction is a classical ground state, while the common
view only accepts the lack of spatial long-range order in
ground states of quantum systems. This particular classical
ground state is realized by a number of possible micro-
states. Therefore, its entropy is finite and larger than zero
in accordance with the third law of thermodynamics. The
classical chiral spin liquid and its ground state, as
described, are different from any of the theoretically
postulated chiral quantum spin liquids [9–11].
The studied material is a homolog of the swedenborgite

mineral [12]. The mineral has the composition SbNaBe4O7

and hexagonal, polar, noncentrosymmetric crystallographic
symmetry P63mc, no. 186. Swedenborgites exhibit a vast
chemical flexibility [13], including the possibility for mag-
netic ions to enter the Be sites. The two distinct crystallo-
graphic sites constitute a network of trimerized kagome
layers connected via trigonal interlayer sites [Fig. 1(a)]. The
kagome layers are trimerized; i.e., the bond lengths 3.249(1)
and 3.065(1) Å differ for triangles with and without inter-
connecting trigonal sites. In YBaCo3FeO7, the smaller
trivalent ion Fe3þ shows a preference for the trigonal site
with 82(2)% occupancy, while 94(1)% of the kagome sites
are occupied by Co2þ as determined from Mössbauer data
[14]. The partial mixing seems to play a role to stabilize the
high symmetry of the hexagonal lattice. The crystal field
splitting in the tetrahedral oxygen environment leads to
isotropic high spin states, S ¼ 3=2 of Co2þ and S ¼ 5=2 of
Fe3þ. Indirect evidence for quenchedorbitalmomentumwith
S ¼ 1.56ð15Þ for Co2þ can be inferred from the site
occupancies [15] and the ratio 1.25 of magnetic moments
[16] for kagome and trigonal sites in the magnetically
ordered swedenborgite CaBaCo2Fe2O7.
Both magnetic ions have three t2 electrons with similar

exchange for Co-Co, Fe-Fe, and Co-Fe mediated by the
superexchange paths via oxygen ions. The exchange
depends on the specific material and differs for couplings
in the kagome lattice Jin and the out-of-plane coupling Jout
between kagome and trigonal spins. The antiferromagnetic

(AFM) interactions in such a layered kagome system are
highly frustrated. The analysis of neutron scattering from a
YBaCo4O7 single crystal concluded that the out-of-plane
coupling Jout induces quasiferro-type correlations along the
columns via the trigonal sites, however, it does not lift the
two-dimensional frustration in the kagome planes [17]. The
degeneracies can be captured by two sum rules, displayed
in Figs. 1(a) and 1(b). This spin liquid orders upon an
intervening structural transition breaking the hexagonal
symmetry and lifting part of the frustration.
Magnetic long-range order with partial remaining dis-

order has been observed in CaBaCo2Fe2O7, still preserving
the hexagonal symmetry [15,16]. A completely different
magnetic behavior is observed in the closely related,
hexagonal YBaCo3FeO7: according to neutron scattering
data of a polycrystalline sample, a spin liquid with
pronounced short-range order is observed down to low
temperatures, T ¼ 1.2 K, despite the very strong AFM

FIG. 1. Swedenborgite structure and exchange. (a) Unit cell of
two trimerized kagome (k) layers (light and dark cyan) inter-
connected by trigonal (t) sites (blue) with nearest neighbor AFM
superexchange Jin in the k planes and Jout out of plane to t sites.
(b) Minimizing the configurational energy yields two sum rules,
(i) implying 120° configurations of spins Sk on the k triangle
between columns with t sites and (ii) canted configurations of
spins Sk and St on the building unit of the columns, a k triangle
capped above and below with a t site, depending on the ratio
τ ¼ Jout=Jin. Spins St within each column tend to align parallel.
The case τ ¼ 0.5 is proposed for YBaCo3FeO7 [14]. (c) View of
the spin columns including t sites (plane ⊥ to a). All magnetic
sites are tetrahedrally coordinated by oxygen, which creates
antisymmetric Dzyaloshinskii-Moriya (DM) exchange on all
AFM exchange paths, denoted by Dout and Din, coupling the
spin space to the hexagonal lattice anisotropy. The Dout vectors,
parallel to the ab plane, connect a t site with three k neighbors
and select the seed for a cycloidal structure of threefold
symmetry. The in-plane vectors Din between k sites enable the
further spreading of the cycloid in the kagome planes.
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superexchange and a Curie-Weiss temperature lower than
−1000 K [14]. The observed diffuse magnetic scattering
was modeled in Monte Carlo simulations applying a
Heisenberg Hamiltonian with AFM nearest neighbor
exchanges for τ ¼ Jout=Jin ≈ 0.5 [14]. According to
Monte Carlo simulations considering the simplified, but
generic Jin-Jout model [16,18,19], the system is centered in a
broad region of spin liquid states and should exhibit largely
canted spin configurations; see Fig. 1(b). Furthermore, a
symmetry analysis predicts the possibility for a chiral spin
liquid phase [20]. As the inversion symmetry is broken by
the neighboring oxygen mediating all superexchange paths,
antisymmetric Dzyaloshinskii-Moriya (DM) interactions
come into play. Their symmetry is determined by the
Moriya [21] and Keffer [22] rules; see Ref. [16]. Both the
frustration of Jin and Jout as well as the alternating DM
interactions favor the replication of correlations along the c
direction. DM terms are typically small compared to the
AFM exchange with minor effect in modifying the spin
canting angles. However, their qualitative influence is strong
by coupling the spin space to the lattice anisotropy and
giving preference for a specific cycloidal chirality of three-
fold symmetry in the manifold of degenerate spin configu-
rations of this highly frustrated system.

II. SAMPLE AND EXPERIMENTAL SETUP

The here investigated single crystal was grown by the
same floating zone image furnace technique described in
Ref. [23]; see also Ref. [24]. The only difference was that
the seed was an oriented single crystal of about 1 cm size to
ensure that the wanted crystal structure axis was parallel to
the growth direction; see Fig. 2.
Swedenborgites are prone to oxygen nonstoichiometry.

Especially the material YBaCo3FeO7 was, at an early stage,
investigated and patented as a possible oxygen storage [25]
and membrane for fuel cells [26], but it was also realized
that the oxygen content affects the lattice symmetry. At
large oxygen surplus, the lattice is orthorhombic [27], as
was also confirmed for YBaCo4O8.2 [28]. However, a lower
than hexagonal symmetry has been reported for various
swedenborgite compounds synthesized in air with smaller
deviations from ideal oxygen stoichiometry. For the present
case, the single crystal of YBaCo3FeO7 was grown from a
melt under highly reducing atmosphere without any cru-
cible present (zone melting under pure Ar in a mirror
furnace). Under these synthesis conditions, it is clear that
the material, used in our investigation, is oxygen stoichio-
metric (O7). Further, the hexagonal symmetry on a minor

piece of our sample (P63mc, no. 186) [24] was confirmed
by a single crystal x-ray diffraction experiment.
The diffuse scattering with polarization analysis has been

measured at the DNS instrument at the Maier-Leibnitz
Zentrum in Munich. The single crystal was mounted with
its c axis perpendicular to the scattering plane in the DNS
instrument. The lattice parameters of the hexagonal plane
are a ¼ b ¼ 6.3 Å. Measurements were performed with a
neutron wavelength of 4.11 Å in stepwise rotations of 1°
around the c axis by taking data in 24 3He detectors with
two detector bank positions. The data cover a section of
180° in the (hk0) plane with a grid of 1° and 2.5° in sample
rotation and detector angle, respectively. For each sample
position, measurements in spin-flip mode were taken with
polarization and polarization reversal along the direction
of Q for the center of the multidetector. Each single
measurement took 25 s yielding typically in the order of
1000 counts near the diffuse peaks. The data were cali-
brated with a vanadium reference, for detection efficiency,
and with a nonmagnetic Ni0.89Cr0.11 reference for ideal
polarization. An intensity modulation on the order of
�10% for symmetry equivalent data was observed, due
to a slightly acentric sample rotation, and was corrected for.

III. EXPERIMENTAL RESULTS

A. Methodical aspects

The present observation of a chiral spin liquid in a
YBaCo3FeO7 single crystal has been made with polarized
diffuse neutron diffraction, using an extension [29] of the
conventional XYZ polarization analysis [30]. A common
standard in polarized neutron scattering is the Cartesian
coordinate system XYZ, with XkQ, Y in orthogonal
direction, both X and Y in a horizontal scattering plane,
and Z pointing in the vertical direction. Note the full
magnetic scattering including chiral terms is measured in
spin-flip scattering with PkQ (i.e., kX) [31,32]. The so-
called XYZ method [30] is devised for a horizontal multi-
detector system, where the polarization cannot be set
simultaneously parallel to Q for the whole detector.
Therefore, one considers more generally a coordinate
system, which is rotated around the vertical axis Z by
the angle between Q and P. In the following, this
coordinate system will be denoted as X0Y 0Z. The extended
XYZ method [29] includes polarization reversal, which in
particular allows for the determination of the chiral part of
the scattering. Furthermore, instead of an arbitrary orien-
tation of X0Y 0 in the plane, X0 is specifically chosen parallel
to Q for the center of the detector, which minimizes
necessary corrections in the analysis; see Ref. [29].

B. Observation of antisymmetric diffuse
magnetic scattering

At low temperatures, T < 10 K, the evolution of the
diffuse magnetic scattering appears to be near saturationFIG. 2. Single crystal YBaCo3FeO7, cylindrical axis kc.
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and persists even at very low temperature 30 mK. No
magnetic long-range order is observed. The most complete
dataset of the (hk0) scattering plane, taken at T ¼ 4 K, is
presented in Fig. 3. In the notation of Ref. [29], Ix0x̄0 and
Ix̄0x0 are the spin-flip scattering with the polarization set
parallel and antiparallel to X0, respectively. The diffuse
magnetic scattering is broadly distributed along the hex-
agonal Brillouin zone boundary (BZ), which is noteworthy
and a sign of strong frustration. Comparing equivalent M
points of the hexagonal BZ of the kagome lattice, one
observes an intensity modulation of a larger k vector, which
relates to the nearest spacings between trigonal to kagome
sites. In the zone center, relics of nuclear Bragg scattering
still appear with high, yet nonperfect polarization. The most
important feature, however, is the antisymmetry of the
diffuse scattering with respect to the mirror symmetry, which
reverses with the direction of P, compare top and bottom part
of Fig. 3, and reveals the chiral properties of the system.

C. Separation of chiral scattering

A separation of the chiral part in the magnetic scattering
is possible by symmetry. The symmetric part can be related

to the magnetic scattering from scalar products of magnetic
moments, while the antisymmetric part relates to chiral
scattering from vector products of magnetic moments.
Reversal of polarization P reverses the antisymmetry of
the pattern; see Fig. 3. Accordingly, the chiral intensity is
obtained by taking the difference of the two datasets,

σchiralQ ¼ Ixx̄ − Ix̄x ¼ iP · ðM⊥
−Q ×M⊥

QÞ; ð1Þ

where M⊥
Q represents the magnetic scattering amplitude,

which includes only components perpendicular toQ due to
the dipolar type of interaction. Therefore, the cross-product
M⊥

−Q ×M⊥
Q points parallel to Q and appears in projection

of the polarization P. The chiral intensity σchiralQ is corrected
by the polarization quality of the instrument (typically
> 0.9) and by taking into account the cosine of the
enclosed angle between P and the actual Q (by which
we change now from the coordinate system X0Y 0Z to XYZ).
In order to obtain the normalized chiral scattering function
SyzQ , the average magnetic form factor of Co and Fe is
included within dipole approximation, residuals of nuclear
Bragg intensities have been removed, and finally, inten-
sities are calibrated for a classical S ¼ 1 spin model. The
proper scaling implies absolute cross sections as obtained
from an analysis of the total magnetic scattering, which will

FIG. 3. Diffuse magnetic scattering of the YBaCo3FeO7 single
crystal T ¼ 4 K, in the (hk0) scattering plane. Top: Ix0x̄0 , spin-flip
scattering with PkX0; bottom: Ix̄0x0 , polarization reversal Pk − X0.
Note the deviation from the mirror symmetry. This antisymmetric
part reverses with the direction of P and is a direct sign of the
underlying cycloidal chirality. (Intensities are given in neutron
counts/s, while measuring all points for 25 s. Number of
independent data points is 8640. The hexagonal Brillouin zone
of the nuclear unit cell is shown in gray.)

FIG. 4. Top: normalized observed chiral scattering SyzQ . Bottom:
modeled chiral scattering based on cycloidal chiral correlations
obtained by Fourier analysis.
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be given in a forthcoming paper. The observed chiral
scattering function SyzQ , shown in Fig. 4 (top), confirms
the postulated chiral spin liquid state in YBaCo3FeO7 [20].

D. Fourier analysis in terms
of chiral correlation functions

In the following new approach, we aim for a real-space
interpretation of the diffuse chiral scattering by establishing
the Fourier representation in terms of chiral correlation
functions, which requires a rigorous decomposition of
the polarized scattering tensor into an orthonormal basis.
The application requires data of sufficient high quality and
extent in reciprocal space.
In the van Hove interpretation of the scattering, SyzQ is the

Fourier transform of the chiral spin correlation function
Gyz

r ¼ hSyð0ÞSzðrÞi. Recall that terms with Sx (kQ) are not
seen via the dipolar interaction with neutrons. Polarized
neutron scattering from single crystals can probe directly
the expectation value for the vector chirality between spins
at distant sites:

C ¼ SR × S0
R0 : ð2Þ

We can distinguish Gyz
r and thus SyzQ for three different

propagations, in x, y, and z directions:

SyzQ ¼ iP ·CðQÞ

¼
X

r

eQ ·

0
BB@

Gyz
x;r erk

Gyz
y;r ery⊥

Gyz
z;r erz⊥

1
CCA sinðQ · rÞ;

¼
X

r

0
BB@

Gyz
x;r eQ · er

Gyz
y;r keQ × erk

0

1
CCA sinðQ · rÞ: ð3Þ

The components of G are scalar coefficients for applying
a Fourier analysis associated with their unit vectors
of propagation. The first term describes a helix, its unit
propagation vector erk is parallel to C, and C is seen in
projection to the scattering unit vector eQ. The second term
describes a cycloid with a unit propagation vector ery⊥
perpendicular to C. The contribution to scattering is the
projection of C to eQ, which is given by the projection of
the in-plane perpendicular direction to eQ. The third term
describes a cycloid propagating along z perpendicular toC.
Of course, propagations along z cannot be seen in the
scattering plane (hk0) and require sufficient data along l
and with components of P along [001]. The given basis
set is complete with respect to a Fourier analysis of the
measured data. In principle, these terms describe also any
combination of the pure chiral modes, constituting, for
example, of a tilted helix by a combination of cycloidal and

helical modes. Furthermore, a cycloid propagating with
both spin components in the ab plane is not visible in the
(hk0) scattering plane, because one component Sx is
parallel to Q. We note that chiral scattering is a result of
interference without self-term and its intensity average is
zero. The chiral scattering function SyzQ represents a fully
antisymmetric scattering tensor, which can be identified
as the sin-Fourier transforms of the components of helical
and cycloidal correlation functions. These components can
be distinguished by symmetry with respect to their propa-
gation vectors, causing antisymmetry parallel to Q in the
case of a helix, and antisymmetry perpendicular toQ in the
case of a cycloid. The observed specific antisymmetry
of SyzQ perpendicular to the scattering vector Q agrees with
the threefold lattice symmetry. Hence, three cycloidal
modes contribute equally in generating a cylindrical cyclo-
idal pattern.
Fourier analysis according to Eq. (3) yields the chiral

pair correlationGyz
r , displayed in Fig. 5, and it is possible to

probe both cycloidal and helical correlations. The measured
SyzQ is essentially described by only cycloidal correlations,
given by the coefficients Gyz

y;r in Eq. (3), while helical terms
related to Gyz

x;r are found to be negligible. Figure 4 shows a
comparison of the observed and calculated chiral scattering
(top and bottom, respectively) as obtained from the Fourier
coefficients of the cycloidal correlations. It is obvious that
the model captures convincingly the characteristic features
of the experimental data. Technically, the Fourier analysis
is performed within a linear least square procedure as it has
been applied to the diffuse scattering of binary alloys [33].
We can actually distinguish correlations between spins at
trigonal and kagome sites from those of spins at separations
of the kagome sublattice, shown in blue and red, respec-
tively. The correlations that involve the trigonal site are
significantly larger in amplitude than correlations among

0 5
2r/a

-1

0

1

G
r

yz

0 5 10 15
x (=2r/a)

-1

0

1

xG
r

yz

~ r exp(-r/0.75 nm)

FIG. 5. Chiral spin correlations. Left: chiral correlation function
Gyz

r as obtained by Fourier analysis. Cycloidal correlations Gyz
y;r

of 3f symmetry including the triangular site (blue) are dominant
with respect to cycloidal correlations between only kagome
sites (red). Helical correlations Gyz

x;r are negligible (black). Right:
Gyz

r scaled with distance to show the extent of observable
correlations and compared to an asymptotically exponential
decaying envelope.
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the kagome spins. This concurs with the expectation that
the DM interaction between neighboring trigonal and
kagome spins is the origin of the cycloidal chirality and
further agrees with the threefold symmetry of SyzQ in Fig. 4.
The true range of observable chiral correlations is revealed
at larger distances by scaling Gyz

r with r as shown in the
right-hand part of Fig. 5.
There are significant cycloidal chiral correlations with

oscillating amplitudes revealing a radial wavelike pattern,
with a relatively large wavelength of about 1 nm and five
notable periods.
A large number of lattice vectors has been used in the

Fourier analysis, distinguishing 100 parameters for kagome
distances and further 100 parameters for distances involv-
ing the t sites. It was necessary to limit the analysis to the
ideal kagome lattice rather than for the actual trimerized
structure. We assume that the overall results will only
weakly depend on details such as trimerization. Because of
the limited resolution, i.e., the large wavelength of the
neutron beam, the data are not sufficient to discriminate
reliably between the splitting of the kagome bond lengths.
This limitation is probably causing the minor systematic
discrepancies between data and modeling. The analysis is
stable for the large tail of correlations with small errors only
(below symbol size). The error bars in Fig. 5 have been
estimated by including systematic variations of model size.
However, these variations also show that the first two
correlation parameters for nearest and next-nearest neigh-
bors are indeed more uncertain due to the limited Q range
of the experiment. The chiral correlations show an asymp-
totic exponential decay length of approximately 0.75 nm,
see Fig. 5, comparable to the period length. The shown
experimental data are limited to the (hk0) scattering plane
and describe the correlations perpendicular to the c axis.
Further experiments did not show any diffuse chiral
modulations in c direction. The total diffuse magnetic
scattering is rather concentrated in the basal scattering
planes. The out-of-plane peak width is small and indicates a
decay length of approximately 1.3 nm. Therefore, we
have to assume that the planar spin correlations simply
replicate in c direction, yielding a cylindrical shape of the
threefold cycloid. This pattern is exactly expected from the
underlying interactions; see Fig. 1. The sum rule for
the AFM superexchange yields ferro-type correlations
for the coupling interlayers of trigonal sites.

E. First discussion of the experimental results

The observed cylindrical symmetry and anisotropy of the
cycloidal correlations is consistent with the hexagonal
crystal structure and can be traced back from the anti-
symmetric Dzyaloshinskii-Moriya interactions appearing
with threefold symmetry around the trigonal sites [16].
Typically, such DM terms are relatively weak, and thus the
strong chiral correlations may be a surprise. An explanation
can be found in the strong geometric frustration of the AFM

exchange. As proposed earlier [14], for a ratio τ ¼ 0.5,
local spin configurations are fully canted, still with remain-
ing degrees of freedom in 3D space. It is fair to assume that
the DM interactions are, as typical, relatively weak.
However, when they come into play, their effect can be
strong, determining a definite handiness and further cou-
pling the spatial polar anisotropy to the spin space. The
proposed scenario is that a cylindrical cycloid starts to grow
around the trigonal sites in a chiral lumplike pattern. The
extent of the chiral correlations signifies further the role of
the in-plane DM exchange between k sites in spreading the
cycloidal pattern in the kagome plane. For visualizing such
a chiral lump, in first approximation, one may consider the
generating DM interactions, see Fig. 1, and the chiral
correlation function itself by choosing a trigonal site as the
origin with its proper polar axis and anisotropy; see Fig. 6.
The local spin configurations are consistent with the DM
exchange and the strong AFM exchange, local and global
sums of spins equal to zero; the core shows a nearly spin
tetrahedral configuration, and second and third neighbor
spins are almost antiparallel oriented (Fig. 6). The extent of
this lump pattern is large but appears exaggerated with the
chosen scaling, which suggests an interwoven assembly of
such chiral lumps.
Apparently, the chiral seeds do not further grow into a

coherently ordered state. It has been observed that the spin
dynamics is slowing down near 40 K [14]. A study of a
similar swedenborgite compound led to the speculation of a
glass transition due to bond disorder [34]. The present
results shed new light on the so far hidden and emerging
chirality, which severely reduces the configuration space of
this frustrated spin system and consequently its dynamics.
The temperature scale may serve for a first estimate of
the DM exchange. On real time scales, the system is not
frozen since the diffuse intensity and thereby the chiral

FIG. 6. Chiral lump pattern as obtained in first approximation
from the chiral correlation function: left, top view projection;
right, perspective side view. Chiral spin correlations are mapped
around a trigonal site, which is considered as the origin of a
magnetic lump. Neighboring spins are scaled with distance from
the center for emphasis only analog to Fig. 4 (right). The color
wheel illustrates the spin angle and phase of the cylindrical
cycloid. Spins show upward (blue) in the center of the lump,
which reflects the polar anisotropy. This choice is arbitrary with
respect to the degeneracy of spin inversion.
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correlations further evolve upon cooling reaching a satu-
ration level below 10 K. Still the lack of order at very low
temperatures appears to be a miracle that is considered
below within the classical theory of magnetic ordering.

IV. THEORETICAL CONCEPT FOR AN
INHOMOGENEOUS CHIRAL GROUND STATE

OF FINITE CORRELATION LENGTH

In search of a theoretical concept, the origin of the
observed specific chirality has to be found in the role of the
present antisymmetric DM exchange. In a second view,
the lack of order in this strongly interacting spin system
imposes the more fundamental challenge. As we lay out,
this can be explained within the standard theory of
magnetic ordering and is valid even for a clean magnetic
system, i.e., in the absence of quenched disorder.
From a fundamental perspective, the unavoidable DM

exchange in this three-dimensional noncentrosymmetric
magnetic system is known and able to prevent a classical
ordering phase transition at finite temperature. Hence,
anomalous cooperative magnetism is the expected behavior.
This is described by the violation of the Lifshitz criterion in
the phenomenological Landau theory [35]. Using minimal
assumptions about this spin systems, namely, the existence
of several nearly degenerate ordering modes, which is the
rule in a geometrically frustrated multisublattice antiferro-
magnets, and the existence of this chiral antisymmetric
exchange, the generic properties of this magnetic system do
not allow a standard classical phase transition into a long-
range ordered state. Instead, the frustration caused by the
chiral DM interaction is able to generate localized entities
which may condense into mesophases that may be ordered
or remain disordered. This is a general mechanism for chiral
helimagnets with DM interaction [36,37]. Eventual con-
densation of such entities then is driven by different weaker
forces which still may remain frustrated at larger scales. A
prominent example for the condensation of spins into an
inhomogeneous magnetic state is known for chiral helimag-
nets, the assembling of skyrmions into dense-packed lattices
[38]. Extending this theory to describe the coupling of
several ordering modes via the DM interaction, the analysis
demonstrates the anomalous magnetic ordering and the
creation of a lumplike pattern of individual zero-dimensional
entities as a generic behavior that can occur in a large class of
acentric magnetic systems. We use the standard phenom-
enological free-energy expansion according to Landau
theory [35], which describes the tendency of the spin system
to develop a long-range ordered state. For the considered
class of crystalline three-dimensional materials, the existence
of the so-called Lifshitz invariants then is a sufficient
criterion to decide whether an ordinary phase transition into
a long-range ordered state is impossible. Thus, only sym-
metry considerations are necessary to decide whether this
criterion is violated.

A. Basic mechanism

The physical mechanism underlying these free-energy
contributions in a spin system, however, is given by
the antisymmetric Dzyaloshinskii-Moriya exchange. The
second vital assumption is the existence of a larger number
of components of the relevant order parameters. These
could be given by energetically almost degenerate magnetic
sublattices or other spin patterns with internal degrees
of freedom in models that describe a large (isotropic)
exchange coupled spin system and its tendency for co-
operative ordering. The primary modes of a possible
magnetic order, thus, are given by the so-called exchange
approximation which defines a set of possible order
parameters. In the swedenborgite-lattice magnetic systems,
the geometrically frustrated antiferromagnetism allows for
a multitude of such coexisting primary modes. Under the
influence of the antisymmetric exchange, owing to the
polar lattice structure, these modes are both twisted into
handed spirals, but also mutually coupled. The Landau-
Ginzburg expansion allows us to formulate general free-
energy densities for such systems [39]. The form of the
resulting free energies with many order-parameter compo-
nents, however, is general, as it depends essentially only on
the broken spatial parity in noncentrosymmetric crystal
classes. Therefore, it is not required to identify the exact
nature of the primary modes. For simplicity, we refer to
them as sublattice spins. The simplest version of such
models is given by a noncentrosymmetric magnetic crystal
with sublattices having two different primary order para-
meters which are energetically degenerate. For simplicity,
we may assume that they are three-component axial vectors
describing, e.g., the orientation of the staggered Néel
vector, φ1 and φ2 with components written as φiα. Using
Landau theory to describe these two coupled primary
modes, we write a phenomenological continuum theory
for the ordered spin structure including spatial gradient
terms ∂γφiα order-parameter components. For certain
classes of noncentrosymmetric magnets, with the appear-
ance of antisymmetric exchange D, we then see that the
Landau theory allows for Lifshitz invariants, terms linear
in one spatial gradient of the order parameters φi and
antisymmetric:

DðγÞ
αβ ðφiα∂γφiβ − φiβ∂γφiαÞ; i ¼ 1; 2: ð4Þ

The Landau-Ginzburg function for each of the modes is
given by

wi ¼ Aið∇φiÞ2 þDðγÞ
αβ ðφiα∂γφiβ − φiβ∂γφiαÞ

þ aiðT − TciÞjφij2 þ biðjφiÞj2Þ2; i ¼ 1; 2; ð5Þ

where the last two terms are the standard Landau expan-
sion. Below the critical temperatures Tci, this model
describes a chiral spiral ground state with a modulation
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length which is determined by the ratio of direct exchange
and antisymmetric exchange, here given by the ratio A=D
for appropriate combinations of materials coefficients Ai

and DðγÞ
αβ [36,39].

For the two different magnetic modes of the model,
individually, these modulation lengths may be different.
In addition, there are Lifshitz-type invariants that couple the
different modes; e.g., for our model they look like

GðγÞ
αβ ðφ1α∂γφ2β − φ2β∂γφ1αÞ; ð6Þ

where the materials coefficients GðγÞ
αβ derive from anti-

symmetric exchange couplings between different primary
modes. Usually, such terms are irrelevant, if one of the
ordering modes is a primary order parameter which orders
first, and the second mode forms only under its influence.
However, near a multicritical point, Tc1 ≃ Tc2, where the
different modes order simultaneously, the influence of this
Lifshitz-type coupling leads to a mutual influence between
the ordering modes onto the other. This means that possible
ordered states have to be described in an enlarged order-
parameter space spanned by ϕ ¼ ðφ1;φ2Þ and internal
rotation occurs because of the existence of the Lifshitz-
type invariants. The competition with other coupling
terms between these order-parameter components then will
introduce additional length scales in the system; i.e., the
Lifshitz-type invariants determine an additional modulation
length for configurations where the two order parameters
can alternatingly exist by an internal rotation from sector 1
to sector 2 of the enlarged order-parameter space. This
basic theory then holds a set of competing lengths scales for
the twisting of order parameters and the transmutation of
one ordering mode into another. This encodes the generic
frustration of multisublattice magnets near multicriticality
and with twisting antisymmetric exchange forces. The
presence of this set of different Lifshitz(-type) invariants
in the free-energy expansion violates the third criterion of
Landau theory, the Lifshitz criterion, in almost all cases.
This means that the system cannot undergo a conventional
continuous phase transition, where the ordering modes
develop into a homogeneous state of order.
The frustrating effect of the DM interactions in multi-

sublattice magnetic systems with coexisting ordering
modes can be captured in a continuum with a frozen gauge
background, as seen by rewriting the gradient part of the
free energy,

W ¼ Að∇ϕÞ2 þ ΔðγÞ
αβ ðϕiα∂γϕiβ − ϕiβ∂γϕiαÞ; ð7Þ

and, by closing the square on the gradient terms and
rescaling, this expression can be rewritten in a form

W ¼ ½ð∂γ þ dðγÞβα Þϕα�2 þ anisotropic terms; ð8Þ

with new sets of materials coefficients A, Δ, and d. This is
an expression akin to minimal coupling with a gauge

field, if the set of dðγÞβα parameters would be dynamical
degrees of freedom. Phenomenological free energies with
frozen gauge background of this type can be called
Dzyaloshinskii models as Dzyaloshinskii developed such
a continuum theory in the context of chiral magnetism in
Ref. [39]. For our model these expressions are fixed or
frozen. Setting the expression within square brackets in
Eq. (8) to zero,

ð∂γ þ dðγÞβα Þϕα ¼ 0; ð9Þ

yields the linear Bogomol’nyi equations of the model
that approximate the multiply twisted core region of
lumps described by this continuum theory, if gradient
terms are allowed for the three Cartesian spatial directions
γ ¼ x, y, z.

B. Primitive model for
swedenborgite-lattice spin systems

A primitive model for classical order-parameter modes
of a material like YBaCo3FeO7 may be constructed from
a set of sublattices, which describes a spin pattern and
respects the symmetries of possible couplings. The simplest
approach combines the spins on different sites into spin
patterns, which are described by a set of axial vectors
l, m, n, etc. The geometrical frustration inherent in the
lattice structure will naturally lead to the (multicritical)
degeneracy for several of these primary modes. Thus, a
statistical field theory for these spin systems may be
represented by a large set of these axial vector fields.
For the crystal class C6v (or 6mm) of the swedenborgite
lattice, the Lifshitz invariants for coupled axial vectors,
represented as continua of fields, have the form [36]

Dlðlx∂xlz − lz∂xlx þ ly∂ylz − lz∂ylyÞ…; ð10Þ

and Lifshitz-type invariants with the form

glmðlx∂xmz −mz∂xlx þ ly∂ymz −mz∂ylyÞ…: ð11Þ

These terms describe the cycloidal rotation of the spin
vectors in any direction in the basal plane, perpendicular to
the c axes (which is taken parallel to the z axis of the
Cartesian system). However, in the polar crystal class, there
are additional Lifshitz-type invariants along the c axis of
the form

flmðlx∂zmx −mx∂zlxÞ: ð12Þ

These terms lead to a modulation in c direction in the
form of the discussed internal rotations of order-parameter
components around each other. The gradient part of
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the Dzyaloshinskii model for swedenborgite lattices,
i.e., Eq. (7) with the specific Lifshitz(-type) invariants
Eqs. (10)–(12), thus describes spin structures with cycloidal
spirals propagating in the basal plane and contains addi-
tional frustrating terms leading to modulations between
ordering modes also in the c-axis direction. This shape
and internal structure of zero-dimensional lumps as
extended solitonic objects can be recognized from this
Dyzaloshinskii model [36,37]. The cores of these lumps are
given by the corresponding Bogomol’nyi equations (9)
and must display cycloidal twist radially in all directions
perpendicular to the c axis, while it also has a limited
extension in the c-axis direction because of the Lifshitz-
type invariants (12). As in the case of skyrmions in chiral
helimagnets [38], the free-energy density in the cores of
these lumps is reduced compared to a single spiral, by
activating several Lifshitz terms. This stabilizes these static
solitonic objects and generates inhomogeneous ground
states upon condensation of these lumps into a mesophase.

C. Topology and geometry of lumpy textures

Depending on the number of relevant order-parameter
components n > 3 in three-dimensional space, the lumps
will retain a set of degrees of freedom in the ideal case
where the order-parameter manifold has no anisotropies
and is described by a sphere Sn−1. Therefore, the lumps are
topologically unstable and cannot be construed as sky-
rmions. As usual, the textures are given by maps from the
real space occupied by an infinite crystal, E3 ∪ f∞g ¼ S3

into the manifold M encoding the order-parameter space
which encodes the multisublattice spin configurations.
Locally, the space can be viewed as a piece of a sphere
Sn−1. The extra directions in order-parameter space which
describe the facility to unwind solitonic lumps also entails
the possibility to rotate lumps internally without changing
their energy. Therefore, the dynamics of the spin system at
finite temperatures even in a condensed mesophase given
by a space-filling arrangement of lumps may retain the
ability to support localized fluctuations with very low
energy, i.e., gapless localized modes hitched on the cores
of the lumps. This suggests a possibility to form partially
ordered spin arrangements, which display residual fluctua-
tions. Therefore, Dzyaloshinskii models of type Eq. (7) are
not expected to yield a conventional phase transition, but
they can display a successive freezing of the spins possibly
with a relatively sharp crossover from a high-temperature
paramagnetic state into a lumpy condensate. This physical
picture suggests that the frustration by the frozen gauge
background may preserve ultimately an amorphous ground
state. Such a state is expected to display a heterogeneous
lumpy appearance, which is almost static. Unless these
lumps themselves order into crystalline latticelike arrays,
there will not arise a true long-range ordered state. Finally, a
heterogeneous dynamics of low-lying excitations, in par-
ticular localized modes, will retain a certain residual

dynamic in this state. Based on this picture, we may
conjecture that Dzyaloshinskii models for chiral frustrated
spin systems with a coexisting larger number of primary
ordering modes can display amorphous ground states
without any need for quenched disorder.
This picture is supported by the fact that generic

continuum fields with frozen gauge background do not
have any finite-temperature phase transition and avoid the
ordering into a homogeneous state in the limit n → ∞ [40].
It is noteworthy that such models have been used to
rationalize the behavior of structural glasses and super-
cooled liquids. However, generically we believe that
structural glasses are only metastable or even instable
frozen states while the true ground state is a crystal.
Here, we may argue that the frozen gauge background
acting on spin systems precludes the appearance of a
conventional long-range order of crystalline type.
The argument for a disordered ground state in such

Dzyaloshinskii models with a frozen gauge background can
be sharpened by their extension into fully fledged gauge
theories and use of the Elitzur theorem [41]; see also
Ref. [42]. The gauge freedom consists in an appropriate
rotation of the field ϕ, which is compensated by a
corresponding redefinition of the gauge fields d,

ϕ0 ¼ RðrÞϕ;
d0βα ¼ g(RðrÞ)dβα; ð13Þ

where R is a rotation matrix acting on the field ϕ and
g(RðrÞ) the corresponding transformation of the gauge
potential, which may not be uniquely defined. A physical
configuration of the spin structure is described by fixing
this gauge, but this can be achieved in multiple ways. For
example, a twisted configuration of the fields can be
represented by a constant unidirectional effective field,
ϕ0 ¼ const, through rotating the reference frame of these
gauge potentials into the local direction of ϕ, whence the
effective gauge potential Eq. (13) becomes a correspond-
ingly varying function in space, d0βαðrÞ. However, for ideal
field configurations close to the free-energy minimum of
the original model, this transformation may be used to
remove the gauge potential and achieve an effective
description with d0βα≡ ¼ 0. For one-dimensional spirals,
this procedure is always possible; for structures twisted in
several spatial directions, the corresponding simplification
is achievable only locally. The conceptually related case of
a spatially varying gauge background has been discussed
by Hertz in a gauge-field model for spin glasses [43] with a
Heisenberg-like spin structure. In the case of spin glasses,
the original ungauged model has a spatially varying gauge
background which describes the quenched disorder.
However, as constant frozen gauge background can host

localized twisted lumps, which realize a local minimum of
the free energy, there exist infinitely many different ways to
fix the gauge potentials and all of them describe states close
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to the free-energy minimum. If one assumes this statement
to be valid, then the ordering of Dzyaloshinskii models
described by Eq. (7) requires a fixing of the various
possible gauge potentials. This is impossible, as the
Elitzur theorem stipulates that a spontaneous local breaking
of the gauge freedom cannot occur. Therefore, the multi-
dimensional Dzyaloshinskii models may represent a type
of statistical field theories which do not allow a conven-
tional ordered ground state that could be realized by a
spontaneous generation of an ordered homogeneous state.
Rigorously, this has been shown for the n → ∞ of our
model [40]. Hence, we suggest that the frustration by the
frozen gauge background similarly should be able to
suppress or avoid any conventional ordering in multicritical
systems with a large number or order-parameter compo-
nents, too. Multisublattice spin systems with chiral DM
interactions can display this type of behavior. Hence, we
consider them as candidates for amorphous classical
ground states. A rigorous proof of our conjecture requires
a proof that assemblies of localized lumps may yield (i) a
space-filling ground state with lowest possible energy and
(ii) that this assembly still is frustrated again at longer
scales and still cannot order into latticelike arrays. It also is
an open problem whether other exotic types of ordering
with unconventional transitions may occur in such models
upon lowering the temperature, like in spin glasses [44].
A successive freezing of the spin systems in materials

described by Dzyaloshinskii models may also encounter
topological constraints that obstruct long-range order,
because particular excited or defected configurations are
necessarily present in order to mediate between different
ideal ordered spin configurations in localized lumps that can
coexist. In the case of the chirally twisted spin configura-
tions, these are minima of the phenomenological free energy.
The excitations mediating between these minima are saddle-
point configurations of the continuous fields, which have
been described in theory for elementary particles as sphaler-
ons [45]. These hypothetical elementary particles are
extended objects derived from quantization of instable or
metastable configurations of classical continuous fields.
Eventually, the existence of these sphaleron configurations
is necessary, owing to the topology of possible field
configurations [46]. The geometrical arrangement of the
various spin textures, i.e., the maps ðS3∞MÞ, may have
topologically nontrivial properties. If the space of these maps
contains topologically noncontractible loops or spheres,
the existence of metastable sphalerons as excitations of
the ground state may become necessary [47]; see also the
discussion in Ref. [46]. This mechanism for topological
obstruction is particularly relevant, when the ideal case of
a target manifold M ¼ Sn−1, which displays the SOðnÞ
rotation symmetry, is abandoned and theM decomposes into
several disjoint subsets or submanifolds. In practical terms,
this means that the freezing in of a lumpy texture may yield a
metastable configuration of a spin system which is unable to

achieve ordering as defects exist between the free-energy
minima that cannot be healed owing to this topological
protection.

D. Fragility of the chiral amorphous state

Anisotropies strong enough to block continuous rotation of
the spinswill prompt the appearance of preferential directions
and ultimately lead to conventional long-range order. This
observation may explain the fact that some swedenborgite-
type spin systems order at fairly large temperatures, while
YBaCo3FeO7 has a liquidlike ground state. Some of these
systems order upon preceding transitions to orthorhombic or
monoclinic structures of lower symmetry,which removes part
of the frustration. However, the DM exchange remains
present and may stabilize local excitations.
In this substituted magnetic system, the magnetic sites are

mixed but have different Heisenberg spin states. But they
have essentially the same exchange. The partly mixed
character of the Co and Fe sites may cancel the effects of
small anisotropies, possibly arising from real exchange
anisotropy, i.e., higher-order effects of the spin-orbit cou-
pling, and any single-ion or dipolar anisotropic couplings
between the spins in the effective coarse-grained continuum
model. A pure spin system without this smoothened
anisotropy may instead undergo a transition to a long-range
order state. Essentially, the twisting influence of the DM
exchange on the spin system is too weak to overcome the
orientation of spins in preferred directions. In the theoretical
language of the previous section, such anisotropies break
gauge invariance sufficiently and invalidate any argument for
disordered ground states based on the gauge freedom. At the
level of the primitive model with two interacting primary
modes, we may illustrate the effect of anisotropies by writing
down the leading anisotropic terms for a polar system from
crystal class Cnv, n ¼ 2, 3, 4, 6; the cases n ¼ 2 and n ¼ 6
begin being relevant for swedenborgite-lattice magnetic
systems. The first term is exchange anisotropy:

wa ¼ kað∂xφixÞ2 þ kbð∂yφiyÞ2 þ kcð∂zφizÞ2: ð14Þ

For cases n ¼ 3, 4, 6 the coefficients fulfill ka ≡ kb. The
next term describes the magnetocrystalline anistropy:

wA ¼ K1ðφixÞ2 þ higher order terms. ð15Þ

These two terms are the standard contributions for a
magnetic ordering mode which dictate the direction of
magnetic moments. Their combined effect also influences
the orientation inhomogeneities like a magnetic wall or of
the cycloidal spiral caused by the chiral DM interaction. A
very large effect of the magnetocrystalline anistropy (15)
will suppress the spiral state completely, and only a
homogeneous order is observed. In addition to the proper
magnetic anisotropies in real space, the coupled model
of these modes also illustrates the anisotropy in the
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order-parameter space. The standard Landau expansion for
these two modes also requires quartic terms:

w4 ¼ biðφi · φiÞ2 þ cðφ1 · φ1Þ2ðφ2 · φ2Þ2
þ higher order terms. ð16Þ

The materials coefficients b1; b2; c then favor certain ori-
entations of the combined order parameter ϕ near the
multicritial point, i.e., temperatures close to Tc1 ≃ Tc2.
Near this point, the collection of the free energy contribu-
tions Eq. (5) with the Lifshitz(-type) invariants (4), (6) the
higher-order terms from Landau expansion (16), and the
higher-order anisotropic terms (14), (15) describe a system
which can display various conventional ordering phenomena
like standard collinear Néel order, a Dzyaloshinskii-spiral
ordering, i.e., one mode twisted under the influence of the
DM interaction, However, the same set also describes the
lumpy structure composed of the two modes, if the degen-
eracy of the modes is not lifted by the anisotropies and the
Lifshitz(-type) invariants (4), (6) are sufficiently strong.
Hence, the generic phenomenology of possible ordered
magnetic states on a polar lattice structure, such as the
swedenborgite lattice, comprises a vast set of possible
behavior. The lumpy amorphous structure can be realized
only if both anisotropies, the real-space magnetic ones, and
the energetic differences encoded in the mode-coupling
terms Eq. (16) are sufficiently small.
The ordering of these lumpy entities into a long-range

ordered array may remain incomplete, as the frustration of
the chiral couplings remains appreciable at all scales,
and the condensates may appear as amorphous textures.
This means that beyond a certain length scale related to
the twisting of the primary ordering-modes, a long-range
order is not detectable any more—and no true phase
transition between the paramagnetic state, i.e., the liquid-
like or gaslike fluid, and the ground state takes place. It is
noteworthy that a similar idea is used to describe the atomic
short-range order of structural glasses, where locally
preferred clusters do not assemble into extended states
[48]. Indeed, in the limit of an ordering described by
infinitely many primary modes, the avoidance of true long-
range order has been rigorously shown [40]. This suggests
that magnetic systems can display similarly avoided long-
range ordering and may prefer to remain in a disordered
finite-temperature state down to lowest temperature,
although they develop a correlated lumpy texture of finite
range. Thus, they form an amorphous or liquidlike ground
state. The ingredients for this mechanism are specific to
certain structures (i) There should exist many nearly degen-
erate ordering modes. Geometrically frustrated antiferro-
magnets owing to their extensive ground-state manifold
fulfill this requirement. (ii) A frustrating frozen gauge
background should act on, and mutually couple, these
degenerate modes in the appropriate continuum description
for these ordering modes. The microscopic DM interaction

in the noncentrosymmetric structure are an easily recogniz-
able form for this mechanism, as the broken inversion
symmetry alone guarantees the existence of the appropriate
chiral couplings.

V. CANDIDATE MATERIALS FOR CHIRAL
SPIN LIQUID GROUND STATES

The proposed classical mechanism for amorphous ground
states of spin systems should exist in various other magnetic
and clean crystalline materials, i.e., crystalline compounds
with magnetic sublattices and in the absence of quenched
disorder that could lead to a spin-glass ground state. Table I
lists a few materials that can be considered as candidates for
thismechanism.This tablehasbeenassembledbyconsidering
the following points. The crystallographic symmetry of the
lattice is known and noncentrosymmetric in such a manner
that simple ordering of magnetic spin systems should be
described by Dzyaloshinskii models of type Eq. (8). Thus,
Dzyaloshinskii-Moriya exchange is present and allows for
Lifshitz(-type) invariants in thephenomenological free energy
of possible (simple) spin ordering. Additionally, we list only
materials that have already received some attention and are
known todisplayunconventionalmagnetic properties, suchas
multiple-k spin structures, spin liquid or glassy states. Our
search, therefore, does not restrict the materials classes that
can be considered as candidates, as the selection criteria rely
only on lattice symmetry and available experimental infor-
mation. The table is not exhaustive by far. For somematerials
listed, the ground state is long-range ordered. In particular, for
the swedenborgite-type materials, these examples are
included to mark the possible contrast between systems,
which do remain in a spin liquid state, and others which
undergo an ordering phase transition, e.g., under the influence
of sufficiently strong anisotropies. In the latter systems, the
twisted chirally correlated spin textures may still be observed
above the ordering transition in an intermediate state, as
mesophases. These are the parent mesophases or precursor
phenomena of chiral helimagnets [49,50].
A symmetrically similar cycloidal chiral spin liquid

state is expected for the isomorphic compound
Y0.5Ca0.5BaCo4O7. While studies on powder samples do
not allow conclusively for distinguishing between proposed
two- [51] and three-dimensional [34] spin structures, the
latter case is clearly confirmed by a recent single crystal
study [52]. It is common to this and the title compound that
the spin dynamics is slowing down upon lowering the
temperature and becomes quasistatic on the timescale of
neutron scattering and neutron spin-echo spectroscopy
[14,34]. SðQÞ evolves continuously below 50 K, where
the line width is already resolution limited in neutron spin-
echo spectroscopy, however, not in a diverging manner but
reaching a saturating level near 10 K. The spin dynamics of
YBaCo3FeO7 has further been studied by Mössbauer [14],
NMR, and ESR spectroscopy [53]. The temperature
dependence of the line width ΔH in high field ESR [53]
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closely resembles the evolution of SðQÞ [14] with temper-
ature, which concurs with our observation of emerging
chiral spin correlations. This behavior can be perceived as
successive freezing of the spin system while retaining a
liquidlike amorphous appearance without long-range order.
In previous studies, it was speculated that this is a
consequence of exchange disorder. In the single crystal
study of Y0.5Ca0.5BaCo4O7 [52], excess oxygen seems to
cause a lower symmetry Pna21 and, interestingly, sup-
pressed incommensurate order is observed. In light of the
present study, the common lack of long-range order may
originate from a similar but yet hidden chirality.
The magnetism of the listed materials is diverse, con-

taining magnetic oxides and metallic systems with 3d band
magnetism or rare earths. This reflects the fact that only
symmetry considerations dictate the presence of the chiral
twisting exchange while the microscopic nature of the
exchange itself is immaterial. The system Ba3Yb2Zn5O11

belongs to noncentrosymmetric breathing pyrocholore
lattices from crystal class 4̄3m. It stands for a whole class
of materials, where certain antiferromagnetic modes can
couple via DM interaction, such that there Lifshitz(-type)
invariants can arise in the phenomenological free energy,
while they would not occur for simple ferromagnetic or
antiferromagnetic ordering described by an axial vector.
Hence, the particular frustrating role of the DM interaction
in these systems depends on the details of the incipient
antiferrromagnetic ordering. In particular, some of the
systems are spin S ¼ 1=2 quantum magnets. Also, in this
case, the antisymmetric Dzyaloshinskii-Moriya exchange
will result in textured states and the ground state could
become a textured quantum spin liquid, where long-range
quantum entanglement emerges on the background of
localized or lumpy noncollinear spin patterns. For some
systems with geometric frustration, e.g., Na4Ir3O8 and
AðTiOÞCu4ðPO4Þ4, with A ¼ Ba, Sr, Pb, the possibility
of multipolar ordering has been discussed, like spin-
nematic quadrupolar states. The corresponding primary
ordering modes then are not of dipolar type. But the
twisting mechanism dictated by the acentric crystalline
symmetry still exists. The corresponding multipolar tex-
tures then would be similar to the textures in chiral liquid
crystals like cholesteric states of chiral nematics.

VI. CONCLUSIONS

To summarize, we have shown a first experimental
evidence of a chiral spin liquid by polarized diffuse neutron
scattering from a single domain crystal. Therefore, we used
an advanced polarization analysis and established a method
to separate and determine the full tensor of the chiral spin
correlation function in real space by use of Fourier analysis.
The particular chirality of cycloidal character with threefold
symmetry links with the symmetry of the DM interactions
that appear on the exchange path between kagome and

interlayer sites. Therefore, the interlayer sites can be
identified as the origin of the cycloidal waves spreading
into the kagome planes. Within the surprisingly large
observable range of correlations, the structure appears as
an inhomogeneous magnetic state consisting of multiple of
these zero-dimensional entities in a random rather than
ordered fashion. The picture of this chiral lump pattern may
resemble the wave pattern from a rain drop hitting a water
surface, whereas the pattern of many rain drops results from
a random superposition.
The stability of this short-range ordered state at low

temperature is unexpected and imposes a fundamental
challenge. Could this be explained in a classical picture
based on the special role of DM interactions? Indeed, it is
shown that the unavoidable antisymmetric DM exchange in
this three-dimensional noncentrosymmetric magnetic sys-
tem is able to prevent a classical ordering phase transition
at finite temperature. The minimal assumptions for the
mechanism in this spin system are (i) the existence of
several nearly degenerate ordering modes, which is the rule
in geometrically frustrated multisublattice antiferromag-
nets, and (ii) the existence of this chiral antisymmetric
exchange. The avoidance of a standard classical phase
transition into a long-range ordered state results from the
violation of the Lifshitz criterion in the phenomenological
Landau theory [35]. Instead, the frustration caused by the
chiral DM exchange is able to cause the appearance of
localized entities, static solitonic kinks, or skyrmion tubes,
or ball-like objects, which we call “lumps,” which is a
general mechanism for chiral helimagnets with DM inter-
actions [36,37]. The condensation of such entities into
larger mesophases then is driven by different weaker forces.
A prominent example for the condensation of spins into an
inhomogeneous magnetic state is known for chiral heli-
magnets, the assembling of skyrmions into dense-packed
lattices [38]. The impact of the DM interactions in polar
crystal structure of YBaCo3FeO7 leads to the specific
cycloidal twisting of spin patterns in directions within
the hexagonal base plane. Based on symmetry consider-
ations, we see that the spin system supports localized
multiply twisted local spin objects, static solitons, with the
shape and anisotropy of spin directions, in accordance with
the chiral spin correlation observed in our experimental
data. Extending this theory to describe the coupling of
several ordering modes via the DM interactions, the
analysis supports an anomalous magnetic ordering and
the creation of a lumplike pattern of individual zero-
dimensional entities. The theoretical concept relates to
field theories for subnuclear particles. Such field theories,
considering many order parameters and a static gauge field,
allow for the presence of massive spatially extended lumps
or static solitons [87,88]. The ordering of these entities into
long-range ordered array may remain incomplete, as the
frustration of the chiral couplings remains appreciable at
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all scales, and the condensates may appear as amorphous
textures. This means that the length scale related to the
twisting of the primary ordering modes spatially limits the
range of spin order, and no true phase transition between
the paramagnetic state and the ground state takes place. A
similar idea is used to describe the atomic short-range order
of structural glasses where locally preferred clusters do not
assemble into extended states [48]. In the limit of an
ordering, described by infinitely many primary modes, the
avoidance of true long-range order is exact [40]. This
suggests that magnetic systems with many nearly degen-
erate ordering modes, such as geometrically frustrated
antiferromagnets, do prefer to remain in an amorphous
finite-temperature state, although they develop a correlated
lumpy texture with a finite range.
The observation of chirality in a spin liquid has allowed

us to identify a mechanism that exists in many frustrated
acentric magnets and can be recognized by simple sym-
metry arguments. Crucial prerequisites, to obtain this
twisted, lumplike short-range order, are frustrated spins
with weak anisotropy that are easily rotatable by chiral
exchange couplings. Of course, we exclude any noncom-
peting anisotropy, which arises from DM itself. Candidate
materials for this type of chiral spin liquids and possible
amorphous ground states are listed in Table I. The proposed
mechanism may be the reason why these and further three-
dimensional, frustrated, acentric magnets lack long-range
spin ordering but exhibit exotic spin liquid states. Some of
these systems order at finite temperatures, yet chiral twisted
short-range order may still be observed by diffuse scatter-
ing above the ordering transition, e.g., the skyrmion
precursor states in MnSi [49,50].
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