471 research outputs found
Simple proof of confidentiality for private quantum channels in noisy environments
Complete security proofs for quantum communication protocols can be
notoriously involved, which convolutes their verification, and obfuscates the
key physical insights the security finally relies on. In such cases, for the
majority of the community, the utility of such proofs may be restricted. Here
we provide a simple proof of confidentiality for parallel quantum channels
established via entanglement distillation based on hashing, in the presence of
noise, and a malicious eavesdropper who is restricted only by the laws of
quantum mechanics. The direct contribution lies in improving the linear
confidentiality levels of recurrence-type entanglement distillation protocols
to exponential levels for hashing protocols. The proof directly exploits the
security relevant physical properties: measurement-based quantum computation
with resource states and the separation of Bell-pairs from an eavesdropper. The
proof also holds for situations where Eve has full control over the input
states, and obtains all information about the operations and noise applied by
the parties. The resulting state after hashing is private, i.e., disentangled
from the eavesdropper. Moreover, the noise regimes for entanglement
distillation and confidentiality do not coincide: Confidentiality can be
guaranteed even in situation where entanglement distillation fails. We extend
our results to multiparty situations which are of special interest for secure
quantum networks.Comment: 5 + 11 pages, 0 + 4 figures, A. Pirker and M. Zwerger contributed
equally to this work, replaced with accepted versio
Long-range big quantum-data transmission
We introduce an alternative type of quantum repeater for long-range quantum
communication with improved scaling with the distance. We show that by
employing hashing, a deterministic entanglement distillation protocol with
one-way communication, one obtains a scalable scheme that allows one to reach
arbitrary distances, with constant overhead in resources per repeater station,
and ultrahigh rates. In practical terms, we show that also with moderate
resources of a few hundred qubits at each repeater station, one can reach
intercontinental distances. At the same time, a measurement-based
implementation allows one to tolerate high loss, but also operational and
memory errors of the order of several percent per qubit. This opens the way for
long-distance communication of big quantum data.Comment: revised manuscript including new result
VR-Hiking: Physical Exertion Benefits Mindfulness and Positive Emotions in Virtual Reality
Exploring the great outdoors offers physical and mental health benefits. Hiking is healthy, provides a sense of accomplishment, and offers an opportunity to relax. However, a nature trip is not always possible, and there is a lack of evidence showing how these beneficial experiences can be replicated in Virtual Reality (VR). In response, we recruited (N=24) participants to explore a virtual mountain landscape in a within-subjects study with different levels of exertion: walking, using a chairlift, and teleporting. We found that physical exertion when walking produced significantly more positive emotions and mindfulness than other conditions. Our research shows that physically demanding outdoor activities in VR can be beneficial for the user and that the achievement of hiking up a virtual mountain on a treadmill positively impacts wellbeing. We demonstrate how physical exertion can be used to add mindfulness and positive affect to VR experiences and discuss consequences for VR designers
Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation.
Melanoma is a devastating skin cancer characterized by distinct biological subtypes. Besides frequent mutations in growth- and survival-promoting genes like BRAF and NRAS, melanomas additionally harbor complex non-random genomic alterations. Using an integrative approach, we have analysed genomic and gene expression changes in human melanoma cell lines (N=32) derived from primary tumors and various metastatic sites and investigated the relation to local growth aggressiveness as xenografts in immuno-compromised mice (N=22). Although the vast majority >90% of melanoma models harbored mutations in either BRAF or NRAS, significant differences in subcutaneous growth aggressiveness became obvious. Unsupervised clustering revealed that genomic alterations rather than gene expression data reflected this aggressive phenotype, while no association with histology, stage or metastatic site of the original melanoma was found. Genomic clustering allowed separation of melanoma models into two subgroups with differing local growth aggressiveness in vivo. Regarding genes expressed at significantly altered levels between these subgroups, a surprising correlation with the respective gene doses (>85% accordance) was found. Genes deregulated at the DNA and mRNA level included well-known cancer genes partly already linked to melanoma (RAS genes, PTEN, AURKA, MAPK inhibitors Sprouty/Spred), but also novel candidates like SIPA1 (a Rap1GAP). Pathway mining further supported deregulation of Rap1 signaling in the aggressive subgroup e.g. by additional repression of two Rap1GEFs. Accordingly, siRNA-mediated down-regulation of SIPA1 exerted significant effects on clonogenicity, adherence and migration in aggressive melanoma models. Together our data suggest that an aneuploidy-driven gene expression deregulation drives local aggressiveness in human melanoma
Spatio-temporal gait analysis based on human-smart rollator interaction
The ability to walk is typically related to several biomechanical components that are involved in the gait cycle (or stride), including free mobility of joints, particularly in the legs; coordination of muscle activity in terms of timing and intensity; and normal sensory input, such as vision and vestibular system. As people age, they tend to slow their gait speed, and their balance is also affected. Also, the retirement from the working life and the consequent reduction of physical and social activity contribute to the increased incidence of falls in older adults. Moreover, older adults suffer different kinds of cognitive decline, such as dementia or attention problems, which also accentuate gait disorders and its consequences. In this paper we present a methodology for gait identification using the on-board sensors of a smart rollator: the i-Walker. This technique provides the number of steps performed in walking exercises, as well as the time and distance travelled for each stride. It also allows to extract spatio-temporal metrics used in medical gait analysis from the interpretation of the interaction between the individual and the i-Walker. In addition, two metrics to assess users’ driving skills, laterality and directivity, are proposed.Peer ReviewedPostprint (author's final draft
- …