4,942 research outputs found

    On non-uniqueness in the traction boundary- value problem for a compressible elastic solid

    Get PDF
    For a compressible isotropic elastic solid local and global non-uniqueness of the homogeneous deformation resulting from prescribed dead-load boundary tractions is examined. In particular, for the plane-strain problem with equibiaxial in-plane tension, equations governing the paths of deformation branching from the bifurcation point on a deformation path corresponding to in-plane pure dilatation are derived. Explicit calculations are given for a specific strain-energy function and the stability of the branches is discussed. Some general results are then given for an arbitrary form of strain-energy function

    Finite deformations of an electroelastic circular cylindrical tube

    Get PDF
    In this paper the theory of nonlinear electroelasticity is used to examine deformations of a pressurized thick-walled circular cylindrical tube of soft dielectric material with closed ends and compliant electrodes on its curved boundaries. Expressions for the dependence of the pressure and reduced axial load on the deformation and a potential difference between, or uniform surface charge distributions on, the electrodes are obtained in respect of a general isotropic electroelastic energy function. To illustrate the behaviour of the tube, specific forms of energy functions accounting for different mechanical properties coupled with a deformation independent quadratic dependence on the electric field are used for numerical purposes, for a given potential difference and separately for a given charge distribution. Numerical dependences of the non-dimensional pressure and reduced axial load on the deformation are obtained for the considered energy functions. Results are then given for the thin-walled approximation as a limiting case of a thick-walled cylindrical tube without restriction on the energy function. The theory described herein provides a general basis for the detailed analysis of the electroelastic response of tubular dielectric elastomer actuators, which is illustrated for a fixed axial load in the absence of internal pressure and fixed internal pressure in the absence of an applied axial load

    The effect of deformation dependent permittivity on the elastic response of a finitely deformed dielectric tube

    Get PDF
    In this paper, the influence of a radial electric field generated by compliant electrodes on the curved surfaces of a tube of dielectric electroelastic material subject to radially symmetric finite deformations is analyzed within the framework of the general theory of nonlinear electroelasticity. The analysis is illustrated for two constitutive equations based on the neo-Hookean and Gent elasticity models supplemented by an electrostatic energy term with a deformation dependent permittivity

    Extension, inflation and torsion of a residually-stressed circular cylindrical tube

    Get PDF
    In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress

    Bifurcation of finitely deformed thick-walled electroelastic cylindrical tubes subject to a radial electric field

    Get PDF
    This paper is concerned with the bifurcation analysis of a pressurized electroelastic circular cylindrical tube with closed ends and compliant electrodes on its curved boundaries. The theory of small incremental electroelastic deformations superimposed on a finitely deformed electroelastic tube is used to determine those underlying configurations for which the superimposed deformations do not maintain the perfect cylindrical shape of the tube. First, prismatic bifurcations are examined and solutions are obtained which show that for a neo-Hookean electroelastic material prismatic modes of bifurcation become possible under inflation. This result contrasts with that for the purely elastic case for which prismatic bifurcation modes were found only for an externally pressurized tube. Second, axisymmetric bifurcations are analyzed, and results for both neo-Hookean and Mooney–Rivlin electroelastic energy functions are obtained. The solutions show that in the presence of a moderate electric field the electroelastic tube becomes more susceptible to bifurcation, i.e., for fixed values of the axial stretch axisymmetric bifurcations become possible at lower values of the circumferential stretches than in the corresponding problems in the absence of an electric field. As the magnitude of the electric field increases, however, the possibility of bifurcation under internal pressure becomes restricted to a limited range of values of the axial stretch and is phased out completely for sufficiently large electric fields. Then, axisymmetric bifurcation is only possible under external pressure
    • …
    corecore