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Abstract. This paper is concerned with the bifurcation analysis of a pressurized electroelastic circular cylindrical tube with
closed ends and compliant electrodes on its curved boundaries. The theory of small incremental electroelastic deformations
superimposed on a finitely deformed electroelastic tube is used to determine those underlying configurations for which
the superimposed deformations do not maintain the perfect cylindrical shape of the tube. First, prismatic bifurcations
are examined and solutions are obtained which show that for a neo-Hookean electroelastic material prismatic modes of
bifurcation become possible under inflation. This result contrasts with that for the purely elastic case for which prismatic
bifurcation modes were found only for an externally pressurized tube. Second, axisymmetric bifurcations are analyzed, and
results for both neo-Hookean and Mooney–Rivlin electroelastic energy functions are obtained. The solutions show that in
the presence of a moderate electric field the electroelastic tube becomes more susceptible to bifurcation, i.e., for fixed values
of the axial stretch axisymmetric bifurcations become possible at lower values of the circumferential stretches than in the
corresponding problems in the absence of an electric field. As the magnitude of the electric field increases, however, the
possibility of bifurcation under internal pressure becomes restricted to a limited range of values of the axial stretch and is
phased out completely for sufficiently large electric fields. Then, axisymmetric bifurcation is only possible under external
pressure.
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1. Introduction

Electroactive elastomeric materials have attracted much interest in the literature in recent years because
their properties are suitable for many potential applications in engineering science, such as in the pro-
duction of actuators, sensors and other devices. One of the geometries of relevance in this context is that
of a circular cylindrical tube actuator made of a dielectric elastomer with flexible electrodes on its curved
boundaries (see, for example, Pelrine et al. [1]). Aspects of the associated theoretical analysis of this
problem have been examined in [2] and in our recent paper [3], where the analysis was based on the tube
maintaining its circular cylindrical shape. An important consideration for the effective operation of such
an actuator is its ability to maintain its perfect cylindrical shape. In this paper we predict the onset of
bifurcation from the cylindrical shape on the basis of the nonlinear theory of electroelasticity for specific
material models.

It is well known that a tube made of a rubberlike material inflated by internal pressure may develop
a bulge beyond a critical deformation, giving rise to deviations from the perfect cylindrical shape under
symmetric loads. Relevant experimental data can be found in [4] and [5], for example, while for a dielectric
elastomer tube recent experiments are described in [6]. For thin- and thick-walled cylindrical shells of
elastic material under internal and external pressure, extensive bifurcation analyses have been provided in
the papers [7,8] by Haughton and Ogden on the basis of the theory of small deformations superimposed on
a finite deformation. Corresponding analysis for an electroactive tube, however, is limited. For example,
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for an electroactive material the bifurcation of a tube subject to just an axial mechanical loading and
an axial electric field was examined recently by Su et al. [9], who found that the stability of the tube
depends on the electric field, the material constants and the geometrical dimensions of the tube. Prismatic
bifurcations have been examined recently by Bortot and Shmuel [10] for a tube with fixed axial extension
but no internal pressure.

In order to determine when deviations from the perfect cylindrical configuration are possible we use the
theory of incremental deformations and electric fields superimposed on an underlying finite deformation
and electric field. We note that by including dependence on time the problem of wave propagation in
an electroelastic tube can be analyzed, as has been done by Shmuel and deBotton [11], who considered
axisymmetric waves for an axially loaded tube with a radial electric field, but no radial mechanical loads.
When the wave speed vanishes, corresponding bifurcation results can be obtained.

This paper is structured as follows. In Sect. 2 we summarize the most important ingredients of the
general theory of electroelasticity as formulated by Dorfmann and Ogden [12]. The incremental electroe-
lastic constitutive laws are also provided in this section, along with explicit formulas for the electroelastic
moduli tensors that are used in subsequent sections.

In Sect. 3, following [3], we consider the underlying problem of the inflation and extension of an
electroelastic tube in the presence of a radial electric field as developed in [3]. The electric field is generated
by a potential difference between compliant electrodes on the inner and outer curved surfaces of the tube.
Expressions are given for the internal pressure in a tube with closed ends and the axial load on its ends
in respect of a general form of electroelastic energy function.

Then, in Sect. 4, we present a bifurcation analysis for the electroelastic tube. First, prismatic bifur-
cations are analyzed, i.e., we seek incremental solutions of the governing equations for which the cross
section is independent of the axial location along the tube. For a specific model of a neo-Hookean elec-
troelastic material we find that prismatic modes of bifurcation are possible under inflation in the presence
of an electric field, which is in contrast to the result for the purely mechanical situation obtained in [8].
Second, axisymmetric bifurcations are considered. These are the configurations of the tube for which cross
sections remain circular, but with the radius depending on the axial location. The results are compared
with those in the purely elastic case: depending on the magnitude of the electric field its presence may
make the electroelastic tube more susceptible to bifurcation for each of the two energy functions adopted
(neo-Hookean and Mooney–Rivlin-based electroelastic models), i.e., bifurcation becomes possible at lower
circumferential stretches than is the case for purely elastic materials without electromechanical interac-
tions. But, for sufficiently large fields bifurcation under inflation is not possible and bifurcation requires
external pressure.

For each of the prismatic and axisymmetric bifurcations numerical results are provided based on use
of the MATLAB code listed in Appendix B of the PhD thesis [13]. Some important aspects of the code,
which employs a numerical scheme used in [8], are discussed and explained briefly in [13].

2. The equations of nonlinear electroelasticity

We consider a deformable electrosensitive body which occupies the reference configuration Br with bound-
ary ∂Br, in the absence of mechanical loads and electric fields. Application of an electric field and mechan-
ical loads induces deformation which results in a new configuration B, with boundary ∂B, commonly
referred to as the deformed configuration. We label material points in the reference configuration Br by
their position vectors X and their images in the current configuration B by their position vectors x. The
deformation is described by the vector field χ, which relates the position of a particle in the reference
configuration to the position of the same particle in the current configuration: x = χ(X). The deformation
gradient tensor, denoted F, is defined by

F = Gradχ, (1)
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where Grad is the gradient operator defined with respect to X.
The quantity defined by

J = detF (2)

represents the local ratio of the volume in the deformed configuration to that in the reference configuration,
and for an incompressible material the constraint

detF = 1 (3)

must be satisfied at each X.
Along with the deformation gradient we shall use the right and left Cauchy–Green deformation tensors,

respectively, defined by

C = FTF, b = FFT. (4)

2.1. Governing equations and boundary conditions

In the purely static context considered here the reduced forms of Maxwell’s equations for a dielectric
material are

curlE = 0, divD = 0, (5)

where E denotes the electric field vector and D is the electric displacement vector in the configuration B.
The operators curl and div are defined with respect to x. Exterior to a material body the corresponding
fields are denoted E� and D�, which satisfy the standard relation D� = ε0E� in a nonpolarizable material,
where ε0 is the vacuum permittivity. They also satisfy field equations (5).

Associated with (5) are the standard boundary conditions

(E� − E) × n = 0, (D� − D) · n = σf on ∂B, (6)

where n is the unit outward normal to ∂B and σf is the free surface charge on ∂B per unit area.
In the absence of mechanical body forces the mechanical equilibrium equation incorporating electric

body forces can be written simply as

divτ = 0, (7)

where τ is the total Cauchy stress tensor, which depends on the deformation and electric field via a
constitutive law, which will be discussed in Sect. 2.3. When there are no intrinsic mechanical couples,
which we assume to be the case here, then τ is symmetric.

The boundary condition associated with (7) is

τn = ta + t�
m on ∂Bt, (8)

where ∂Bt is the part of the boundary where the traction is prescribed, ta being the mechanical part of
the traction and t�

m = τ �
mn, which is the additional traction due to the Maxwell stress τ �

m, calculated
from the fields outside the body B. The Maxwell stress is defined by

τ �
m = ε0E� ⊗ E� − 1

2
ε0(E� · E�)I, (9)

where I is the identity tensor.
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2.2. Lagrangian forms of the electric fields

Lagrangian forms of the electric field vectors are defined by

EL = FTE, DL = JF−1D, (10)

where we recall that J = detF. They satisfy the counterparts of equations (5) in the reference configu-
ration, i.e.,

CurlEL = 0, DivDL = 0. (11)

Here the operators Curl and Div are defined with respect to X.
In order to obtain a Lagrangian form of the equilibrium equation (7) we introduce the total nominal

stress tensor T defined by
T = JF−1τ , (12)

which is a generalization of the nominal stress tensor in nonlinear elasticity to the electromechanical
context. By a standard identity, this yields the Lagrangian form of the electromechanical equilibrium
equation (7), i.e.,

DivT = 0. (13)

The boundary condition associated with (13) can be obtained with the help of the relation

τnds = TTNdS, (14)

which makes use of Nanson’s formula nds = JF−TNdS connecting infinitesimal areas ds and dS in the
current and reference configurations, n and N being the respective normals to these areas. Then, (8)
transforms to

TTN = tA + t�
M on ∂Brt, (15)

where ∂Brt is the pre-image of Bt, tA and t�
M = T�

M
TN (with T�

M = JF−1τ �
m) being the mechanical

traction and the Maxwell traction per unit reference area, respectively.
With the help of Nanson’s formula and (10) the boundary conditions (6) convert to Lagrangian form

as
(FTE∗ − EL) × N = 0, (JF−1D∗ − DL) · N = σF on ∂Br, (16)

where N is the unit outward normal to ∂Br and σF is the free surface charge density per unit area of ∂Br.

2.3. Constitutive equations

For the problem discussed in this paper it is convenient to choose DL as the independent electric variable.
For mechanically incompressible materials the total stress tensor and the electric field in Lagrangian form
are, respectively,

T =
∂Ω∗

∂F
− pF−1, EL =

∂Ω∗

∂DL
, (17)

where Ω∗(F,DL) is a total energy density function, as defined in [12], and p is a Lagrange multiplier that
accommodates the constraint (3).

For an incompressible isotropic electroelastic material Ω∗ depends on F and DL through invariants of
the right Cauchy–Green deformation tensor C and DL, i.e.,

I1 = trC, I2 =
1
2
[(trC)2 − tr(C2)], (18)

I4 = DL · DL, I5 = DL · (CDL), I6 = DL · (C2DL), (19)

with I3 = detC = 1 omitted since we are considering incompressible materials.
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By expressing Ω∗ in terms of the invariants, then expanding out (17) in terms of the derivatives of
Ω∗ with respect to the invariants, we obtain, on use of (12) with J = 1 and (10)1, the total stress τ and
electric field E, i.e.,

τ = 2Ω∗
1b + 2Ω∗

2(I1b − b2) − pI + 2Ω∗
5D ⊗ D + 2Ω∗

6(D ⊗ bD + bD ⊗ D), (20)

E = 2(Ω∗
4b

−1 + Ω∗
5I + Ω∗

6b)D, (21)
where Ω∗

i stands for ∂Ω∗/∂Ii, i = 1, 2, 4, 5, 6, and b is the left Cauchy–Green tensor defined in (4)2.

2.4. Incremental formulation

In this section we summarize the equations governing incremental deformations and electric displacements
superimposed on a deformed configuration and an initial electric field. A more detailed discussion of this
theory can be found in [14,15].

2.4.1. Incremental equations and boundary conditions. The increment of each variable is now identified
by a superimposed dot. For example, ẋ is the increment in the displacement and Ḟ = Grad ẋ is the corre-
sponding increment in the deformation gradient. The increments ĖL, ḊL, Ṫ must satisfy the incremental
governing equations

CurlĖL = 0, DivḊL = 0, DivṪ = 0. (22)

Outside the material increments in the field vectors are connected by Ḋ� = ε0Ė� and satisfy the equations

curlĖ� = 0, divḊ� = 0. (23)

The incremental forms of the boundary conditions (16) and (15) with J = 1 are

(ḞTE� + FTĖ� − ĖL) × N = 0 on ∂Br, (24)

(F−1Ḋ� − F−1ḞF−1D� − ḊL) · N = σ̇F on ∂Br, (25)

ṪTN = ṫA + τ̇ �
mF

−TN − τ �
mF

−TḞTF−TN on ∂Br, (26)
where τ̇ �

m is the incremental Maxwell stress obtained from (9) and expressed as

τ̇ �
m = ε0[Ė� ⊗ E� + E� ⊗ Ė� − (E� · Ė�)I]. (27)

We now work in terms of the push-forward versions of the increments in ĖL, ḊL and Ṫ defined by
(since J = 1)

ĖL0 = F−TĖL, ḊL0 = FḊL, Ṫ0 = FṪ, (28)
which are the incremental counterparts of (10) and (12) and also referred to as quantities updated from
the reference configuration Br to the deformed configuration B, with updated quantities identified by a
zero subscript. A detailed discussion of the concept of updating can be found in [16] for purely mechanical
problems, and here we use this approach for updating variables to the deformed configuration for our
electromechanical problem.

The governing equations (22) are then updated to

curlĖL0 = 0, divḊL0 = 0, divṪ0 = 0, (29)

and the corresponding boundary conditions are updated to

(Ė� + LTE� − ĖL0) × n = 0 on ∂B, (30)

(Ḋ� − LD� − ḊL0) · n = σ̇F0 on ∂B, (31)

ṪT
0 n = ṫA0 + τ̇ �

mn − τ �
mL

Tn on ∂B, (32)

where L = ḞF−1 = gradu, u (= ẋ) being a function of x.
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The incremental form of (2) is then obtained as J̇ = Jtr(ḞF−1), and for an incompressible material
J̇ = 0 and the incremental form of the incompressibility condition (3) becomes

trL ≡ divu = 0. (33)

Let e1, e2, e3 be unit basis vectors in an orthogonal curvilinear coordinate system. Then, in component
form, Eq. (29)3 yields the three scalar equations

Ṫ0ji,j + Ṫ0jiek · ej,k + Ṫ0kjei · ej,k = 0, i = 1, 2, 3, (34)

in which summation over repeated indices j and k from 1 to 3 is implied and the notation ,j represents
the derivative associated with the jth curvilinear coordinate and is made explicit in Sect. 4 for cylindrical
polar coordinates.

2.4.2. Incremental constitutive equations. Increments Ḟ and ḊL in the deformation gradient and
Lagrange electric displacement induce increments Ṫ and ĖL in the nominal stress and Lagrange electric
field, leading to incremental forms of the constitutive laws. From (17) we obtain

Ṫ = A∗Ḟ + A
∗ḊL + pF−1ḞF−1 − ṗF−1, ĖL = A

∗TḞ + A∗ḊL, (35)

where A∗, A∗, A∗, which are, respectively, fourth-, third- and second-order tensors, denote electroelastic
moduli associated with the total energy Ω∗. Their component forms are written

A∗
αiβj =

∂2Ω∗

∂Fiα∂Fjβ
, A

∗
αi|β =

∂2Ω∗

∂Fiα∂DLβ
, A∗

αβ =
∂2Ω∗

∂DLα∂DLβ
, (36)

which enjoy the symmetries
A∗

αiβj = A∗
βjαi, A∗

αβ = A∗
βα. (37)

The vertical bar in the component form of A∗ separates the first two and the third indices, because the
first two indices are associated with a second-order tensor, whereas the third one is associated with a
vector. The tensor A

∗ maps a vector into a second-order tensor, whereas its transpose maps a second-
order tensor into a vector. In component form this is expressed as A

∗
αi|β = A

∗T
β|αi. The component forms

of the equations in Eq. (35) are then

Ṫαi = A∗
αiβjḞjβ + A

∗
αi|βḊLβ + pF−1

αk ḞkβF−1
βi − ṗF−1

αi , ĖLα = A
∗
βi|αḞiβ + A∗

αβḊLβ , (38)

where F−1
αi is defined as (F−1)αi.

When expressed in terms of the invariants Im, m ∈ {1, 2, 4, 5, 6}, the components in (36) can be
expanded as

A∗
αiβj =

∑

m∈I

∑

n∈I
Ω∗

mn

∂Im

∂Fiα

∂In

∂Fjβ
+

∑

n∈I
Ω∗

n

∂2In

∂Fiα∂Fjβ
, (39)

A
∗
αi|β =

6∑

m=4

∑

n∈I
Ω∗

mn

∂Im

∂DLβ

∂In

∂Fiα
+

6∑

n=5

Ω∗
n

∂2In

∂Fiα∂DLβ
, (40)

A∗
αβ =

6∑

m=4

6∑

n=4

Ω∗
mn

∂Im

∂DLα

∂In

∂DLβ
+

6∑

n=4

Ω∗
n

∂2In

∂DLα∂DLβ
, (41)

where I is the index set {1, 2, 5, 6}, Ω∗
n = ∂Ω∗/∂In and Ω∗

mn = ∂2Ω∗/∂Im∂In, m,n ∈ {1, 2, 4, 5, 6}. The
required expressions for the derivatives of the invariants with respect to F and DL in (39)–(41) are given
in “Appendix A.1,” and the resulting expressions for the moduli are listed in “Appendix A.2.”

The updated versions of (35) are

Ṫ0 = A∗
0L + A

∗
0ḊL0 + pL − ṗI, ĖL0 = A

∗T
0 L + A∗

0ḊL0, (42)
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and in component form the connections between the electroelastic moduli tensors (36) and their updated
forms are

A∗
0jilk = FjαFlβA∗

αiβk, A
∗
0ji|k = FjαF−1

βk A
∗
αi|β , A∗

0ij = F−1
αi F−1

βj A∗
αβ . (43)

The symmetries (37) carry over to the updated versions of the moduli, while A
∗
0 gains the symmetry

A
∗
0ij|k = A

∗
0ji|k. (44)

We also record here the useful connection

A∗
0jisk − A∗

0ijsk = (τjs + pδjs)δik − (τis + pδis)δjk. (45)

3. Finite deformations of an electroelastic tube

3.1. Extension and inflation of a tube

The geometry of a circular tube is described by cylindrical polar coordinates R, Θ, Z in its reference
configuration according to

0 < A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (46)

where A and B are the internal and external radii and L is the length of a tube. The deformed geometry
of the tube with circular symmetry maintained is described in terms of cylindrical polar coordinates r, θ, z
as

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (47)
where a, b and l are the radii and the length in the deformed configuration.

For an incompressible material, on which we focus here, the deformation is given by

r2 = a2 + λ−1
z (R2 − A2), θ = Θ, z = λzZ, (48)

where λz is the uniform axial stretch of the tube. The azimuthal stretch is denoted λ and given by
λ = r/R, and the deformation gradient is diagonal with respect to the cylindrical polar axes. Then, by
the incompressibility condition (3), the radial stretch is λr = λ−1λ−1

z , and in terms of the independent
stretches λ and λz the invariants I1 and I2 are then

I1 = λ−2λ−2
z + λ2 + λ2

z, I2 = λ2λ2
z + λ−2 + λ−2

z . (49)

3.1.1. Field variables and boundary conditions. Flexible electrodes are attached to the boundaries R = A
and R = B in the reference configuration. A potential difference is then applied between the elec-
trodes along with an axial mechanical load and internal pressure, resulting in the deformed configuration
described above and charges on the electrodes with equal magnitudes and opposite signs. Let the charges
be denoted Q(a) and Q(b), so that Q(a) + Q(b) = 0. Because of the symmetry it can be assumed that
the electric field is purely radial and therefore independent of the coordinates θ and z, i.e., the geometry
of the tube is such that end effects can be neglected. Let Dr(r) then denote the only component of the
electric displacement D. The equation (5)2 satisfied by D yields the specialization

d(rDr)
dr

= 0, (50)

so that rDr is a constant, and hence, by evaluation at the boundaries r = a and r = b, we have

rDr(r) = aDr(a) = bDr(b). (51)

By Gauss’s theorem there is no field outside the tube so that D� = 0. The boundary condition (6)2
applied on r = a and r = b then yields

Dr(a) = σfa, Dr(b) = −σfb, (52)
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where σfa and σfb are the free surface charge densities on the two boundaries, i.e.,

σfa =
Q(a)
2πal

, σfb =
Q(b)
2πbl

. (53)

For this problem the Lagrange variable DL has just a single component, which we denote by DLR,
related by the specialization of (10)2 to Dr by DLR = λ−1

r Dr = λλzDr. From the definitions (19) of the
invariants I4, I5, I6 we then obtain the specializations

I4 = D2
LR, I5 = λ−2λ−2

z I4, I6 = λ−4λ−4
z I4. (54)

For an incompressible isotropic electroelastic material the energy function Ω∗ is expressed as a function
of the invariants I1, I2, I4, I5, I6 and written with these arguments: Ω∗(I1, I2, I4, I5, I6). Then the only
nonzero component of the electric field E, denoted Er, is obtained from the specialization of (21) as

Er = 2(Ω∗
4λ

2λ2
z + Ω∗

5 + Ω∗
6λ

−2λ−2
z )Dr, (55)

and Eq. (5)1 is satisfied automatically.

3.1.2. Stress components and mechanical equilibrium. From (20) the only nonzero (total) Cauchy stress
components are given by

τrr = 2Ω∗
1λ

−2λ−2
z + 2Ω∗

2(λ
−2
z + λ−2) − p + 2Ω∗

5D
2
r + 4Ω∗

6λ
−2λ−2

z D2
r , (56)

τθθ = 2Ω∗
1λ

2 + 2Ω∗
2

(
λ−2

z + λ2
zλ

2
) − p, (57)

τzz = 2Ω∗
1λ

2
z + 2Ω∗

2

(
λ−2 + λ2λ2

z

) − p. (58)
Since, from (49) and (54), the invariants are functions of two independent stretches and I4, we now define
a reduced energy function in the form

ω∗(λ, λz, I4) = Ω∗(I1, I2, I4, I5, I6), (59)

with the invariants on the right-hand side given by (49) and (54). Elimination of p then leads to simple
expressions for the stress differences, namely

τθθ − τrr = λ
∂ω∗

∂λ
, τzz − τrr = λz

∂ω∗

∂λz
. (60)

Similarly, the expression (55) is simplified to

Er = 2λ2λ2
z

∂ω∗

∂I4
Dr. (61)

The equilibrium equation (7) reduces to

r
dτrr

dr
= τθθ − τrr, (62)

with which we associate boundary conditions on r = a and r = b. Since there is no electric field outside
the tube the Maxwell stress (9) vanishes. Thus, the only load on the surfaces r = a and r = b is the
internal pressure P on r = a with zero traction on r = b, i.e.,

τrr = −P on r = a, τrr = 0 on r = b. (63)

Integration of (62) with the use of (60)1 and boundary conditions (63) yields

P =

b∫

a

λω∗
λ

dr

r
, (64)

where ω∗
λ = ∂ω∗/∂λ.

From (48) we have b =
√

a2 + λ−1
z (B2 − A2) and from (54)1 with DLR = λλzDr, it follows from (51),

(52), (53) and (48) that I4 = Q(a)2/4π2L2[A2 +λz(r2 −a2)]. Thus, for any given λz and initial geometry
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of the tube, (64) provides an expression for the pressure as a function of the internal radius a and the
charge on the electrodes.

The axial load N on any cross section of the cylinder is given by

N = 2π

b∫

a

τzzrdr, (65)

and a standard manipulation enables this to be re-cast in the form

F = N − πa2P = π

b∫

a

(2λzω
∗
λz

− λω∗
λ)rdr, (66)

where F denotes the so-called reduced axial load, which removes from N the contribution of the pressure
on the ends of a closed-ended tube.

4. Bifurcation of an electroelastic circular cylinder

In this section, for consistency with the corresponding analysis in the purely elastic situation in [8], we
re-order the coordinates r, θ, z as θ, z, r, associated with the stretches λ, λz, λr, respectively. We also use
the notation λ1, λ2, λ3 for these stretches in the same order, and for the associated components of vectors
and tensors we adopt the indices 1, 2, 3. The reduced energy function ω∗(λ, λz, I4) is then replaced by
ω∗(λ1, λ2, I4), and stress differences (60) are rewritten as

τ11 − τ33 = λω∗
λ, τ22 − τ33 = λzω

∗
λz

, (67)

where ω∗
λ, ω∗

λz
denote the derivatives ∂ω∗/∂λ, ∂ω∗/∂λz.

The unit basis vectors associated with the cylindrical polar coordinates θ, z, r are denoted as e1, e2,
e3, and the derivatives (·),k in (34) denoted by subscripts with commas become ∂/r∂θ, ∂/∂z, ∂/∂r for
k = 1, 2, 3, respectively. For the cylindrical polar coordinates the only nonzero scalar products ei · ej,k in
(34) are

e1 · e3,1 = −e3 · e1,1 =
1
r
. (68)

The incremental displacement ẋ = u is written

u = ve1 + we2 + ue3, (69)

and the matrix of components of L = gradu with respect to the basis vectors e1, e2, e3 is

[Lij ] =

⎡

⎣
(u + vθ)/r vz vr

wθ/r wz wr

(uθ − v)/r uz ur

⎤

⎦ , (70)

where the subscripts θ, z, r without a preceding comma indicate the corresponding partial derivatives.
The incremental incompressibility condition (33) specializes to

(u + vθ)/r + wz + ur = 0. (71)
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4.1. Prismatic bifurcations

For prismatic bifurcations u, v and w are independent of z. Furthermore, the equation for w decouples
from those for u and v and any solution for w does not affect the cross-sectional shape of the tube. It is
therefore convenient to set w = 0. The matrix of components of L then specializes to

[Lij ] =

⎡

⎣
(u + vθ)/r 0 vr

0 0 0
(uθ − v)/r 0 ur

⎤

⎦ , (72)

and the incompressibility condition reduces to

u + vθ + rur = 0. (73)

Equation (73) is satisfied by taking a function φ(θ, r) such that

u =
φθ

r
, v = −φr. (74)

For the updated increment ḊL0 in the independent variable DL Eq. (29)2 reduces to

∂(rḊL03)
∂r

+
∂ḊL01

∂θ
= 0, (75)

which, similarly to (73), is satisfied by defining a function ψ(θ, r) such that

ḊL03 =
ψθ

r
, ḊL01 = −ψr. (76)

The remaining governing equations are now used to obtain two coupled equations for φ and ψ. First,
we note that the equilibrium equation for i = 2 in (34) is satisfied identically, while the equations for
i = 1, 3 yield

Ṫ011,1 + Ṫ031,3 +
1
r
(Ṫ031 + Ṫ013) = 0, (77)

Ṫ013,1 + Ṫ033,3 +
1
r
(Ṫ033 − Ṫ011) = 0. (78)

For the considered underlying cylindrical configuration the components of Ṫ0 in the above two equations
are given by

Ṫ011 = A∗
01111L11 + A∗

01133L33 + pL11 − ṗ + A
∗
011|3ḊL03, (79)

Ṫ013 = A∗
01313L31 + A∗

01331L13 + pL13 + A
∗
013|1ḊL01, (80)

Ṫ031 = A∗
03131L13 + A∗

03113L31 + pL31, (81)

Ṫ033 = A∗
03311L11 + A∗

03333L33 + pL33 − ṗ + A
∗
033|3ḊL03, (82)

where the components of the electroelastic moduli tensors A∗
0 and A

∗
0 are obtained by specializing the

general expressions given in “Appendix A.2.”
On substitution of these expressions into (77) and (78) and use of incompressibility condition (73), we

obtain

ṗθ = [r(A∗′
03113 + p′) + A∗

01313](uθ − v)/r + (rA∗′
03131 + A∗

03131)vr + A∗
03131rvrr

+ (A∗
01331 + A∗

01133 − A∗
01111)urθ + A

∗
011|3ḊL03,θ + A

∗
013|1ḊL01, (83)

ṗr = [r(A∗′
03333 + p′ − A∗′

01133) + A∗
03333 + A∗

01111 − 2A∗
01133]ur/r

+ (A∗
03333 − A∗

01133)urr + A∗
01313(uθθ − vθ)/r2 + A∗

01331vrθ/r + A
∗
013|1ḊL01,θ/r

+A
∗′
033|3ḊL03 + A

∗
033|3(ḊL03,r + ḊL03/r) − A

∗
011|3ḊL03/r, (84)
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respectively, where a prime denotes differentiation with respect to r and the partial derivatives of the
components ḊL01 and ḊL03 with respect to r and θ are indicated by a prior comma.

Second, Eq. (29)1 reduces to

∂(rĖL01)
∂r

− ∂ĖL03

∂θ
= 0. (85)

From (42)2 appropriately specialized we obtain

ĖL01 = A
∗
013|1L31 + A∗

011ḊL01, ĖL03 = A
∗
011|3L11 + A

∗
033|3L33 + A∗

033ḊL03, (86)

with the components of A
∗
0 and A∗

0 given in “Appendix A.2.” After substitution of (86) into (85) the
latter gives

A
∗
013|1(uθ − v)/r + A∗

011ḊL01 + A
∗′
013|1(uθ − v) + A

∗
013|1[(uθr − vr)r − uθ + v]/r

+A∗′
011rḊL01 + A∗

011rḊL01,r − A
∗
011|3(uθ + vθθ)/r − A

∗
033|3urθ − A∗

033ḊL03,θ = 0. (87)

By eliminating ṗr and ṗθ from (83) and (84) by cross-differentiation and then substituting for expres-
sions (74) and (76) in the result and in (87), followed by some rearrangements, we obtain two coupled
equations for φ and ψ, namely

r4A∗
03131φrrrr + A∗

01313φθθθθ − (2A∗
01331 + 2A∗

01133 − A∗
01111 − A∗

03333)r
2φrrθθ

+ (2r4A∗′
03131 + 2r3A∗

03131)φrrr − [(A∗
03333 + A∗

01111 − 2A∗
01331 − 2A∗

01133)r

+ (2A∗′
01331 + 2A∗′

01133 − A∗′
01111 − A∗′

03333)r
2
]
φrθθ − [

2A∗
01331 − A∗

01111 − A∗
03333 + 2A∗

01133 − 2A∗
01313

+ (A∗′
01313 − 2A∗′

01331 − 2A∗′
01133 + A∗′

01111 + A∗′
03333)r + (A∗′′

01331 + p′′)r2
]
φθθ

− (A∗′
01331 + p′ + A∗

01313/r − 2A∗′
03131 − rA∗′′

03131

)
r3φrr − (A∗′′

01331 + p′′ + A∗′
01313/r − A∗

01313/r2
)
r3φr

− (A∗
011|3 + A

∗
013|1 − A

∗
033|3)r

2ψrθθ − (A∗′
011|3 − A

∗′
033|3)r

2ψθθ + A
∗
013|1r

3ψrr + A
∗′
013|1r

3ψr = 0, (88)

(A∗
013|1 + A

∗
011|3 − A

∗
033|3)rφrθθ + (A∗

033|3 − A
∗
013|1 − A

∗
011|3 + A

∗′
013|1r)φθθ

+ A
∗
013|1r

2φrr + A
∗′
013|1r

2φr − r3A∗
011ψrr − A∗

033rψθθ − (A∗
011 + rA∗′

011)r
2ψr = 0. (89)

We now turn to the boundary conditions associated with the latter two equations. First, the boundary
condition (32) is specialized to

ṪT
0 n = ṫA0 =

{
PLTn − Ṗn on r = a

0 on r = b
(90)

since E� = 0, where Ṗ is a prescribed constant increment in P . Hence, by (9) and (27), both the Maxwell
stress and its increment vanish. In terms of components this gives

Ṫ031 =

{
PL31 on r = a

0 on r = b,
Ṫ033 =

{
PL33 − Ṗ on r = a

0 on r = b.
(91)

By using (81), (45) and the boundary conditions (63), the first of these can be written as

A∗
03131(L13 + L31) = 0 on r = a, b, (92)

while on use of (82) and the incompressibility condition L11 + L33 = 0 the second can be rewritten as

(A∗
03333 − A∗

03311 + p)L33 − ṗ + A
∗
033|3ḊL03 =

{
PL33 − Ṗ on r = a

0 on r = b.
(93)
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The term in ṗ is eliminated by differentiating (93) with respect to θ (which removes the constant Ṗ )
and using (83). Then by using the expressions for the components Lij , ḊL01 and ḊL03 in terms of the
functions φ and ψ this yields the boundary conditions

r(A∗
03333 − 2A∗

01133 − 2A∗
01331 + A∗

03131 + A∗
01111)φrθθ + r3A∗

03131φrrr

− (rA∗′
03131 + A∗

03333 − 2A∗
01133 − 2A∗

01331 + 2A∗
03131 + A∗

01111)φθθ

+ r2(rA∗′
03131 + A∗

03131)φrr − r(rA∗′
03131 + A∗

03131)φr

+ r(A∗
033|3 − A

∗
011|3)ψθθ + r2A∗

013|1ψr = 0 on r = a, b, (94)

in which we have also used the boundary condition (63)1 in the form τ33 = −P on r = a. And from (92),
assuming A∗

03131 �= 0, we obtain similarly

r2φrr − rφr − φθθ = 0 on r = a, b. (95)

The incremental electric field has to satisfy Eq. (29)1, which becomes (87) for the problem considered
here, and it also has to satisfy the associated boundary condition (30). Since there is no exterior field,
the latter reduces to

ĖL01 = 0 on r = a, b, (96)

which, from the constitutive component (86)1 and the expression for the component L13 with (74) and
(76)2, can be written in terms of functions φ and ψ as

A
∗
013|1(φθθ + rφr)/r2 − A∗

011ψr = 0 on r = a, b. (97)

We now have two coupled partial differential equations (88) and (89) for φ and ψ as functions of r
and θ and two boundary conditions in each of (94), (95) and (97). No progress is possible theoretically,
and in general, the system of equations and boundary conditions needs to be solved numerically. Toward
this we consider solutions for φ and ψ of the form

φ = rfn(r) sin nθ and ψ = gn(r) sin nθ (98)

for consistency and comparison with the corresponding purely elastic situation considered in [8], n being
a nonnegative integer.

The equations (88) and (89) are now expressed in terms of the functions fn(r) and gn(r) and their
derivatives as

r{A∗
03131r

3f ′′′
n + (rA∗′

03131 + 3A∗
03131)r

2f ′′
n

+ [rA∗′
03131 − A∗

03131 + n2(2A∗
01331 + 2A∗

01133 − A∗
01111 − A∗

03333)]rf
′
n}′

+ (n2 − 1)[r2A∗′′
03131 + rA∗′

03131 + (n2 − 1)A∗
03131 + n2(τ11 − τ33)]fn + A

∗
013|1r

2g′′
n

+ A
∗′
013|1r

2g′
n + (A∗

011|3 + A
∗
013|1 − A

∗
033|3)rn

2g′
n + (A∗′

011|3 − A
∗′
033|3)rn

2gn = 0, (99)

r2A∗
013|1f

′′
n + [r2A∗′

013|1 + 2rA∗
013|1 − rn2(A∗

013|1 + A
∗
011|3 − A

∗
033|3)]f

′
n

+ r(A∗′
013|1 − n2

A
∗′
013|1)fn − r2A∗

011g
′′
n − (A∗

011 + rA∗′
011)rg

′
n + A∗

033n
2gn = 0.

(100)

To obtain (99) we have used the expression

p′ = A∗′
03131 − A∗′

01331 + (A∗
03131 − A∗

01313)/r, (101)

which can be obtained from (62) and (45), and its derivative

p′′ = A∗′′
03131 − A∗′′

01331 − (A∗
03131 − A∗

01313)/r2 + (A∗′
03131 − A∗′

01313)/r. (102)

The boundary conditions (94), (95) and (97) are rewritten as
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A∗
03131r

3f ′′′
n + (rA∗′

03131 + 4A∗
03131)r

2f ′′
n

+ [rA∗′
03131 − (n2 − 1)A∗

03131 + n2(2A∗
01331 + 2A∗

01133 − A∗
01111 − A∗

03333)]rf
′
n

+ (n2 − 1)(rA∗′
03131 + A∗

03131)fn − n2(A∗
033|3 − A

∗
011|3)gn + A

∗
013|1rg

′
n = 0 on r = a, b. (103)

r2f ′′
n + rf ′

n + (n2 − 1)fn = 0 on r = a, b, (104)
A

∗
013|1[rf

′
n + (1 − n2)fn] − A∗

011rg
′
n = 0 on r = a, b. (105)

4.1.1. Numerical solution. For purposes of the numerical solution we introduce the dimensionless quan-
tities

r̂ =
r

A
, f̂n(r̂) =

fn(r)
A

, ĝn(r̂) =
gn(r)
σfaA

, (106)

τ̂ =
τ

μ
, Â∗

0 =
A∗

0

μ
, Â

∗
0 = A

∗
0

ε

σfa
, Â

∗
0 = A∗

0ε, (107)

where the constants μ and ε have dimensions of elastic modulus and permittivity, respectively, and we
recall that σfa is the charge per unit area on the boundary r = a. We then rearrange the governing
equations as a nondimensional system of six ordinary differential equations with the new variables

ŷ1(r̂) = f̂n(r̂), ŷ2(r̂) = f̂ ′
n(r̂), ŷ3(r̂) = f̂ ′′

n (r̂),

ŷ4(r̂) = f̂ ′′′
n (r̂), ŷ5(r̂) = ĝn(r̂), ŷ6(r̂) = ĝ′

n(r̂), (108)

suitable for use in MATLAB [17]. The resulting first-order system of equations may be written in the
standard form as ŷ′

i = Mij ŷj , i = 1, . . . , 6, where a prime now indicates differentiation with respect to r̂
and Mij is a 6 × 6 matrix whose entries can be extracted from the connections

ŷ′
1 = ŷ2, ŷ′

2 = ŷ3, ŷ′
3 = ŷ4, ŷ′

5 = ŷ6,

Â∗
03131r̂

4ŷ′
4 + (n2 − 1)[r̂2Â∗′′

03131 + r̂Â∗′
03131 + (n2 − 1)Â∗

03131 + n2(τ̂11 − τ̂33)]ŷ1

+ [r̂3Â∗′′
03131 + n2r̂2Q̂′(r̂) + r̂2Â∗′

03131 − r̂Â∗
03131 + n2r̂Q̂(r̂)]ŷ2

+ [7r̂3Â∗′
03131 + r̂4Â∗′′

03131 + 5r̂2Â∗
03131 + n2r̂2Q̂(r̂)]ŷ3 + (6r̂3Â∗

03131 + 2r̂4Â∗′
03131)ŷ4

+ σ̂2
fan2r̂(Â∗′

011|3 − Â
∗′
033|3)ŷ5 + σ̂2

fa[r̂2Â∗′
013|1 + n2r̂(Â∗

011|3 + Â
∗
013|1 − Â

∗
033|3)]ŷ6

+ σ̂2
far̂2Â∗

013|1ŷ
′
6 = 0,

r̂2Â∗
011ŷ

′
6 = r̂(Â∗′

013|1 − n2
Â

∗′
013|1)ŷ1 + [r̂2Â∗′

013|1 + 2r̂Â∗
013|1 − n2r̂(Â∗

013|1 + Â
∗
011|3 − Â

∗
033|3)]ŷ2

+ r̂2Â∗
013|1ŷ3 + n2Â∗

033ŷ5 − r̂(Â∗
011 + r̂Â∗′

011)ŷ6, (109)

where for brevity we have defined the notations

Q̂(r̂) = 2Â∗
01331 + 2Â∗

01133 − Â∗
01111 − Â∗

03333, (110)

and

σ̂2
fa =

σ2
fa

με
. (111)

Note that the equation for ŷ′
4 in (109)5 involves ŷ′

6, which can be obtained from (109)6 for substitution
into (109)5 in order to obtain the matrix Mij if required.

Also, we nondimensionalize the boundary conditions (103), (104) and (105) and express them in terms
of the new variables as

r̂3Â∗
03131ŷ4 + r̂2(r̂Â∗′

03131 + 4Â∗
03131)ŷ3 + r̂[r̂Â∗′

03131 − (n2 − 1)Â∗
03131 + n2Q̂(r̂)]ŷ2

+ (n2 − 1)(r̂Â∗′
03131 + Â∗

03131)ŷ1 − σ̂2
fan2(A∗

033|3 − A
∗
011|3)ŷ5 + σ̂2

far̂Â∗
013|1ŷ6 = 0 on r̂ = â, b̂, (112)

r̂2ŷ3 + r̂ŷ2 + (n2 − 1)ŷ1 = 0 on r̂ = â, b̂, (113)
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Table 1. Bifurcation values λa, λb and nondimensional pressure P/μ for neo-Hookean electroelastic material for
different values of parameter σ̂fa and different values of A/B; λz = 1, mode number n = 2 in all cases. Also, for
comparison bifurcation values of λb from [8] for the three-term strain-energy function [18] are given in column H

H neo-Hookean electroelastic material (115)
σ̂fa = 0 σ̂fa = 0.25 σ̂fa = 0.5 σ̂fa = 0.75

A/B λb λa λb P/μ λa λb P/μ λa λb P/μ λa λb P/μ

0.95 0.999 0.9993 0.999 − 0.000 1.0651 1.058 0.008 1.3013 1.275 0.025 1.7789 1.718 0.036
0.9 0.997 0.9969 0.997 − 0.001 1.0628 1.051 0.155 1.3032 1.251 0.050 1.8014 1.678 0.074
0.85 0.994 0.9923 0.994 − 0.004 1.0581 1.042 0.020 1.3029 1.226 0.075 1.8248 1.638 0.115
0.8 0.990 0.9848 0.990 − 0.011 1.0503 1.032 0.022 1.2992 1.200 0.099 1.8488 1.596 0.157
0.7 0.979 0.9576 0.979 − 0.046 1.0211 1.010 0.005 1.2761 1.143 0.136 1.8963 1.507 0.247
0.6 0.968 0.9066 0.967 − 0.139 0.9647 0.987 − 0.068 1.2148 1.082 0.135 1.9339 1.409 0.343

Â
∗
013|1[r̂ŷ2 + (1 − n2)ŷ1] − r̂Â∗

011ŷ6 = 0 on r̂ = â, b̂, (114)

where â = a/A, b̂ = b/A.
For the numerical calculations we use a simple energy function for which the purely elastic part

corresponds to the neo-Hookean model and the electric part is quadratic in the electric displacement, so
that

Ω∗(I1, I5) =
1
2
μ(I1 − 3) +

1
2
ε−1I5, (115)

where the constant μ is the shear modulus of the neo-Hookean material in the absence of an electric field
and the constant ε is the electric permittivity of the electroelastic material. The required components of
the electroelastic moduli are listed in “Appendix B.1,” and the numerical scheme used for the calculations
is described in Sect. 4.2.

For different values of the parameter σ̂fa and for λz = 1 the values of λa = a/A (the azimuthal stretch
at the inner boundary) at which prismatic bifurcations become possible for mode number n = 2 are
given in Table 1, along with the corresponding value of λb = b/B (the azimuthal stretch at the outer
boundary). The results for the neo-Hookean electroelastic material with σ̂fa = 0 are almost identical
to those reported in [8] for a different strain-energy function. This is consistent with the findings in [8]
that under external pressure the values of λb (equivalently λa) are essentially independent of the form of
strain-energy function.

For the considered electroelastic material an important difference from the purely elastic case is that
the tube may bifurcate into a prismatic configuration under internal pressure (P > 0). In [8] it was
reported that prismatic modes are not possible under internal pressure for the material models considered,
but only under external pressure (P < 0). This can also be observed here in Table 1 for the case σ̂fa = 0:
all nondimensional pressures at which prismatic bifurcations are possible are negative. The values of P/μ
in Table 1 were calculated using formula (64) and the specialization of (115) in the form

ω∗(λ, λz, I4) =
1
2
μ(λ2 + λ2

z + λ−2λ−2
z − 3) +

1
2
ε−1λ−2λ−2

z I4. (116)

A closed-form expression for P was given in [3] for this constitutive model.
In [10], prismatic bifurcations in the absence of an internal pressure were analyzed and solutions

showing the shapes of different bifurcation modes were obtained for both the Gent and neo-Hookean
models.

Note that for any given underlying boundary-value problem we may prescribe either the charge or
potential on the boundary, and the potential difference between r = b and r = a, V say, or charge density
σfa, adjusts according to the formula

V = −aσfa

ε
log(b/a). (117)
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This was given for the material model (115) in [3] (in a slightly different notation). Thus, results for a
fixed potential difference can be obtained from Table 1.

4.2. Axisymmetric bifurcations

For axisymmetric bifurcations we take v = 0 and u and w to be independent of θ, so that the components
of the displacement gradient specialize to

[Lij ] =

⎡

⎣
u/r 0 0
0 wz wr

0 uz ur

⎤

⎦ , (118)

and the incompressibility condition then has the form

u/r + wz + ur = 0. (119)

A function φ(z, r) is then introduced such that

u =
φz

r
, w = −φr

r
(120)

and Eq. (119) is satisfied.
The governing equation (29)2 reduces to

∂(rḊL03)
∂r

+
∂(rḊL02)

∂z
= 0, (121)

which can be satisfied by defining a function ψ(z, r) such that

ḊL03 =
ψz

r
, ḊL02 = −ψr

r
. (122)

For axisymmetric incremental deformations with no dependence on θ and v = 0 the component of
equilibrium equation (34) for i = 1 is satisfied identically, while the components for i = 3, 2 specialize,
respectively, to

Ṫ023,2 + Ṫ033,3 +
1
r
(Ṫ033 − Ṫ011) = 0, (123)

Ṫ022,2 + Ṫ032,3 +
1
r
Ṫ032 = 0, (124)

wherein the components

Ṫ023 = A∗
02323L32 + A∗

02332L23 + pL23 + A
∗
023|2ḊL02, (125)

Ṫ032 = A∗
03232L23 + A∗

03223L32 + pL32, (126)

Ṫ011 = A∗
01111L11 + A∗

01122L22 + A∗
01133L33 + pL11 − ṗ + A

∗
011|3ḊL03, (127)

Ṫ022 = A∗
02211L11 + A∗

02222L22 + A∗
02233L33 + pL22 − ṗ + A

∗
022|3ḊL03, (128)

Ṫ033 = A∗
03311L11 + A∗

03322L22 + A∗
03333L33 + pL33 − ṗ + A

∗
033|3ḊL03 (129)

are obtained by specializing (42)1. Substitution of these into (123) and (124) and use of (119) yields

ṗr = (rA∗′
01133 − A∗

01111)u/r2 + (rA∗′
03333 + rp′ + A∗

03333)ur/r + A∗
03333urr

+A∗
02323uzz + (rA∗′

02233 + A∗
02233 − A∗

01122)wz/r + (A∗
02233 + A∗

03223)wrz

+A
∗
023|2ḊL02,z + A

∗′
033|3ḊL03 + A

∗
033|3ḊL03,r + (A∗

033|3 − A
∗
011|3)ḊL03/r, (130)

ṗz = A∗
03232wrr + (rA∗′

03232 + A∗
03232)wr/r + A∗

02222wzz + (A∗
02233 + A∗

03223)urz

+ (rA∗′
03223 + rp′ + A∗

03223 + A∗
01122)uz/r + A

∗
022|3ḊL03,z. (131)
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The governing equation (29)1 reduces to

∂ĖL03

∂z
− ∂ĖL02

∂r
= 0. (132)

From (42)2 we have

ĖL02 = A
∗
023|2uz + A∗

022ḊL02, ĖL03 = A
∗
011|3u/r + A

∗
022|3wz + A

∗
033|3ur + A∗

033ḊL03, (133)

and when these are substituted into (132) we obtain

A
∗
011|3uz/r + A

∗
022|3wzz + A

∗
033|3urz + A∗

033ḊL03,z

− A
∗′
023|2uz − A

∗
023|2uzr − A∗′

022ḊL02 − A∗
022ḊL02,r = 0. (134)

On use of (120) and (122) this is then expressed in terms of φ and ψ as

r(A∗
033|3 − A

∗
022|3 − A

∗
023|2)φrzz + (A∗

011|3 − A
∗
033|3 + A

∗
023|2 − rA∗′

023|2)φzz

+ A∗
033rψzz + A∗

022rψrr + (rA∗′
022 − A∗

022)ψr = 0. (135)

To express (130) and (131) in terms of φ and ψ we eliminate the terms in ṗ by cross-differentiation to
arrive at

A∗
03232r

3φrrrr + A∗
02323r

3φzzzz − (2A∗
02233 + 2A∗

03223 − A∗
02222 − A∗

03333)r
3φrrzz

− 2(A∗
03232 − rA∗′

03232)r
2φrrr − [A∗

02222 − 2A∗
02233 − 2A∗

03223 + A∗
03333

+ r(2A∗′
02233 + 2A∗′

03223 − A∗′
02222 − A∗′

03333)
]
r2φrzz + (3A∗

03232 − 3A∗′
03232r + A∗′′

03232r
2)rφrr

− [
2A∗

02233 − 2A∗
01122 − rA∗′

01133 + A∗
01111 − A∗

03333

+ r(A∗′
01122 − A∗′

02233 − A∗′
03223 + A∗′

03333) + r2(A∗′′
03223 + p′′)

]
rφzz

− (3A∗
03232 − 3rA∗′

03232 + r2A∗′′
03232)φr − (A∗

022|3 + A
∗
023|2 − A

∗
033|3)r

3ψrzz

− [
A

∗
011|3 − A

∗
022|3 + r(A∗′

022|3 − A
∗′
033|3)

]
r2ψzz = 0, (136)

p′′ being given by (102).
Thus, we have two coupled equations (135) and (136), to which we now append the boundary condi-

tions. Similarly to Sect. 4.1, the electric field boundary condition (30) reduces to

ĖL02 = 0 on r = a, b, (137)

which, on application of the specialization of the incremental constitutive law (42)2, yields

A
∗
023|2φzz − A∗

022ψr = 0 on r = a, b (138)

in terms of functions φ and ψ.
The traction boundary condition again has form (90) but now specializes to

Ṫ032 =

{
PL32 on r = a

0 on r = b,
Ṫ033 =

{
PL33 − Ṗ on r = a

0 on r = b,
(139)

and hence, on using the components (126) and (129), we obtain

A∗
03232(L23 + L32) = 0 on r = a, b, (140)

and, on use of (129) and the incompressibility condition L11 + L22 + L33 = 0,

(A∗
03333 − A∗

02233 + p)L33 + (A∗
01133 − A∗

02233)L11 − ṗ + A
∗
033|3ḊL03 =

{
PL33 − Ṗ on r = a

0 on r = b.
(141)

With the help of (120) and the assumption A∗
03232 �= 0 Eq. (140) can be expressed in terms of φ as

rφzz − rφrr + φr = 0 on r = a, b. (142)
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For the boundary conditions (141) the terms in ṗ are eliminated by differentiating the equations with
respect to z and using the expression for ṗz in (131) to obtain, after use of (120) and (122), and some
rearrangement with the help of (45) and (62),

r2A∗
03232φrrr + r2(A∗

02222 + A∗
03333 − 2A∗

02233 + A∗
03232 − 2A∗

03223)φrzz + r(rA∗′
03232 − A∗

03232)φrr

− r(A∗
03333 + A∗

01122 − A∗
01133 − A∗

02233 + rA∗′
03232 + A∗

03232 − A∗
03223 + A∗

03131 − A∗
01313)φzz

− (rA∗′
03232 − A∗

03232)φr + r2(A∗
033|3 − A

∗
022|3)ψzz = 0 on r = a, b (143)

in terms of functions φ and ψ.
Analogously to (98) we now write

φ(z, r) = rfα(r) cos αz and ψ(z, r) = gα(r) cos αz, (144)

where α is a constant to be determined by the boundary conditions on the ends of the tube.
The equations (135) and (136) can then be expressed, respectively, as

α2r2(A∗
033|3 − A

∗
022|3 − A

∗
023|2)f

′
α + α2r(A∗

011|3 − A
∗
022|3 − A

∗′
023|2r)fα

− A∗
022rg

′′
α − (A∗′

022r − A∗
022)g

′
α + α2rA∗

033gα = 0 (145)

and

r4[A∗
03232f

′′′
α + (rA∗′

03232 + 2A∗
03232)f

′′
α/r + (rA∗′

03232 − A∗
03232)f

′
α/r2 − (rA∗′

03232 − A∗
03232)fα/r3]′

+ α2r2[(2A∗
02233 + 2A∗

03223 − A∗
03333 − A∗

02222)r
2f ′′

α

+ (2rA∗′
03223 + 2rA∗′

02233 − rA∗′
03333 − rA∗′

02222 − A∗
03333 − A∗

02222 + 2A∗
02233 + 2A∗

03223)rf
′
α

+ (r2A∗′′
03223 + r2p′′ + rA∗′

03223 + rA∗′
01122 − rA∗′

01133 − rA∗′
02222 + rA∗′

02233

+ A∗
01111 + A∗

02222 − 2A∗
01122 − 2A∗

03223)fα] + α4r4A∗
02323fα + α2r3(A∗

022|3 + A
∗
023|2 − A

∗
033|3)g

′
α

+ α2[(A∗
011|3 − A

∗
022|3)r

2 + (A∗′
022|3 − A

∗′
033|3)r

3]gα = 0, (146)

and the corresponding boundary conditions (138), (142) and (143) as

A
∗
023|2α

2rfα + A∗
022g

′
α = 0 on r = a, b, (147)

r2f ′′
α + rf ′

α + (α2r2 − 1)fα = 0 on r = a, b (148)
and

A∗
03232r

3f ′′′
α + (rA∗′

03232 + 2A∗
03232)r

2f ′′
α + (rA∗′

03232 − A∗
03232)rf

′
α

− (rA∗′
03232 − A∗

03232)fα − α2r2[(A∗
03333 + A∗

02222 − 2A∗
02233 − 2A∗

03223 + A∗
03232)rf

′
α

− (rA∗′
03232 + A∗

01122 − A∗
02222 + A∗

02233 − A∗
01133 + A∗

03223 + A∗
03131 − A∗

01313)fα]

− α2r2(A∗
033|3 − A

∗
022|3)gα = 0 on r = a, b. (149)

4.2.1. Numerical solution. In order to proceed further we use the incremental boundary condition

u = 0 on z = 0, l, (150)

so that radial displacements at the ends of the cylinder are not allowed (and the increment Ṫ022 in the
axial load also vanishes). Therefore, from the previous relation, (120)1 and (144)1, we obtain

α =
πn

l
=

πn

λzL
, (151)

where n = 1, 2, 3, . . . is the axisymmetric mode number. We see from (151) that α may be changed either
by mode number n or the length of the cylinder L. We fix n = 1 and we perform our analysis for different
lengths of the cylinder, recognizing that an increase in the mode number n is captured by a decrease in
the value of L.
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We again use the dimensionless variable r̂ = r/A, and as in the case considered for prismatic bifurca-
tions we use the nondimensional quantity σ̂fa defined in (111) as an electric parameter that is a measure
of the charge on the inner boundary of a tube. We also introduce new nondimensional variables

α̂ = αA, f̂α(r̂) =
fα(r)
A2

, ĝα(r̂) =
gα(r)
σfaA2

, p̂(r̂) =
p(r)
μ

, (152)

and analogously to (108) we define the variables

ŷ1(r̂) = f̂α(r̂), ŷ2(r̂) = f̂ ′
α(r̂), ŷ3(r̂) = f̂ ′′

α(r̂),

ŷ4(r̂) = f̂ ′′′
α (r̂), ŷ5(r̂) = ĝα(r̂), ŷ6(r̂) = ĝ′

α(r̂). (153)

Then we again have a first-order system of equations written in the form ŷ′
i = Mij ŷj , with the

coefficients Mij obtained from

ŷ′
1 = ŷ2, ŷ′

2 = ŷ3, ŷ′
3 = ŷ4, ŷ′

5 = ŷ6,

r̂4Â∗
03232ŷ

′
4 = −[3(r̂Â∗′

03232 − Â∗
03232) − r̂2Â∗′′

03232 + α̂2r̂2(r̂2Â∗′′
03223 + r̂2p̂′′ + r̂Â∗′

03223 + r̂Â∗′
01122

− r̂Â∗′
01133 − r̂Â∗′

02222 + r̂Â∗′
02233 + Â∗

01111 + Â∗
02222 − 2Â∗

01122 − 2Â∗
03223) + α̂4r̂4Â∗

02323]ŷ1

− [r̂3Â∗′′
03232 − 3r̂2Â∗′

03232 + 3r̂Â∗
03232 + α̂2r̂3(2r̂Â∗′

03223 + 2r̂Â∗′
02233 − r̂Â∗′

03333 − r̂Â∗′
02222

− Â∗
03333 − Â∗

02222 + 2Â∗
02233 + 2Â∗

03223)]ŷ2

− [r̂3(3Â∗′
03232 + r̂Â∗′′

03232) − 3r̂2A∗
03232 + α̂2r̂4(2Â∗

02233 + 2Â∗
03223 − Â∗

03333 − Â∗
02222)]ŷ3

− (2r̂4Â∗′
03232 + 2r̂3Â∗

03232)ŷ4 − α̂2[(Â∗
011|3 − Â

∗
022|3)r̂

2 + (Â∗′
022|3 − Â

∗′
033|3)r̂

3]σ̂2
faŷ5

− α̂2r̂3(Â∗
022|3 + Â

∗
023|2 − Â

∗
033|3)σ̂

2
faŷ6,

Â∗
022r̂ŷ

′
6 = α̂2(Â∗

011|3r̂ − Â
∗
022|3r̂ − Â

∗′
023|2r̂

2)ŷ1 + α̂2r̂2(Â∗
033|3 − Â

∗
022|3 − Â

∗
023|2)ŷ2

+ α̂2r̂Â∗
033ŷ5 − (Â∗′

022r̂ − Â∗
022)ŷ6, (154)

and boundary conditions

Â
∗
023|2α̂

2r̂ŷ1 + Â∗
022ŷ6 = 0, on r = â, b̂, (155)

r̂2ŷ3 + r̂ŷ2 + (α̂2r̂2 − 1)ŷ1 = 0, on r = â, b̂, (156)

Â∗
03232r̂

3ŷ4 + (r̂Â∗′
03232 + 2Â∗

03232)r̂
2ŷ3 + (r̂Â∗′

03232 − Â∗
03232)r̂ŷ2 − (r̂Â∗′

03232 − Â∗
03232)ŷ1

− α̂2r̂2[(Â∗
03333 + Â∗

02222 − 2Â∗
02233 − 2Â∗

03223 + Â∗
03232)r̂ŷ2 − (r̂Â∗′

03232 + Â∗
03223 + Â∗

03131 − Â∗
01313

+ Â∗
01122 − Â∗

02222 + Â∗
02233 − Â∗

01133)ŷ1] − α̂2r̂2(Â∗
033|3 − Â

∗
022|3)σ̂

2
faŷ5 = 0, on r = â, b̂. (157)

Expressions for the electroelastic moduli in respect of energy function (115) are given in “Appendix B.2,”
in both dimensional and dimensionless forms.

We define initial values for the system (154) in the form

ŷi(â) = δik, i = 1, . . . , 6, (158)

where δik is the Kronecker delta. Each k (= 1, . . . , 6) in (158) corresponds to the solution yk of the system
(154), the general solution of which can be written in the form

ŷ =
6∑

k=1

ckŷk, (159)

where ck are constants.
We require the solution (159) to satisfy boundary conditions (155)–(157), and we are interested in

solutions (159) for which at least one constant ck is nonzero. Substitution of (159) into (155)–(157) leads
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Fig. 1. Plots of the axisymmetric bifurcation curves (continuous curves) and the curves of zero pressure (dashed curves)
for the neo-Hookean electroelastic material with A/B = 0.85, σ̂fa = 0, 0.8, 1.1, 1.4: a L/B = 5; b L/B = 10. The values of
σ̂fa are shown next to the relevant curves, the smaller fonts being associated with the zero pressure curves

to a 6× 6 determinant of coefficients of ck, vanishing of which represents the bifurcation criterion for this
problem. This method was also used for the prismatic bifurcations.

In addition to the neo-Hookean electroelastic model (115) we consider its Mooney–Rivlin generalization
in the form

Ω∗ =
1
2
μ1(I1 − 3) − 1

2
μ2(I2 − 3) +

1
2
ε−1I5, (160)

where μ1 ≥ 0 and μ2 ≤ 0 are material constants satisfying μ1 − μ2 = μ. In what follows we set μ1 = 0.8μ
and μ2 = −0.2μ. The associated dimensional and nondimensional electroelastic moduli and their required
derivatives are listed in “Appendix B.2.”

In Fig. 1, for a relatively thin-walled tube with A/B = 0.85, curves of λa versus λz for which the
bifurcation criterion is satisfied are plotted (continuous curves) together with the curves corresponding
to P = 0 (dashed curves) for several values of σ̂fa, separately for two values of L/B. These include results
for σ̂fa = 0, which corresponds to the result obtained in [8] for the neo-Hookean purely elastic material
(subject to the factor 2 correction in the values of L/B in figure 3 of [8], which was also noted in [19]).
Note that, for each value of σ̂fa, P is positive above the associated dashed curve and negative below it.
For the smaller values of σ̂fa the bifurcation criterion is met under inflation for any fixed value of λz

above a minimum value, but as σ̂fa increases the range of λz for which bifurcation is possible decreases
and eventually disappears for large enough σ̂fa. This can be seen, for example, for the value σ̂fa = 1.4
in Fig. 1a, for which the dashed curve is entirely above the bifurcation curve, in which case bifurcation
under inflation is not possible. Bifurcation is possible for negative P , which amounts to bifurcation under
external pressure. In this and the subsequent figures the uppermost curve corresponds to the purely
elastic case (or, equivalently, to the case when there is no potential between the electrodes and thus no
electric field). As the electric field is applied and increased, the corresponding curves drop to lower values
of λa.

For the two values of L/B used in Fig. 1, the corresponding results are shown for a thicker-walled tube
with A/B = 0.5 in Fig. 2, and with the same values of σ̂fa. This shows that the qualitative features are
the same as in Fig. 1. The quantitative differences are that, for a given value of λz, larger values of the
azimuthal stretch are required to achieve bifurcation under inflation corresponding to higher pressure,
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Fig. 2. Plots of the axisymmetric bifurcation curves (continuous curves) and the curves of zero pressure (dashed curves)
for the neo-Hookean electroelastic material with A/B = 0.5, σ̂fa = 0, 0.8, 1.1, 1.4: a L/B = 5; b L/B = 10. The values of
σ̂fa are shown next to the relevant curves, the smaller fonts being associated with the zero pressure curves

and that larger values of σ̂fa are required to completely phase out the possibility of bifurcation under
inflation. Results for shorter tubes with L/B = 2.5 and the same values of A/B as in Figs. 1 and 2
are illustrated in Fig. 3. Again, the main qualitative features are unchanged, but as λz increases, larger
values of λa are required for bifurcation with correspondingly larger pressures, and there is no phasing
out of bifurcation under inflation for the considered range of values of σ̂fa. The nonmonotonicity of the
λa versus λz curves after the maxima evident in Figs. 1a and 2a is more pronounced in Fig. 3b. However,
this does not correspond to any form of snap-through instability since the values of λz (when there are
more than one) associated with a given λa correspond here to significantly different values of P , whereas
snap through between different values of λz occurs at fixed P .

Figure 4 shows representative plots for the Mooney–Rivlin material (160) for A/B = 0.85 analogous
to those in Fig. 1. For the purely elastic case considered in [8], the values of μ1 and μ2 used were not
specified so a direct comparison of our results with those in [8] is not possible. However, our results are
qualitatively very similar to those reported in Figure 3 of [8]. For this material there is no phasing out of
the bifurcation under internal pressure unless the electric field becomes very large (not shown), but as for
the neo-Hookean material increasing electric field strength reduces the values of λa for which bifurcation
can occur for those fixed λz for which bifurcation is possible under inflation. Moreover, the range of values
of λz for which bifurcation is possible is more limited than for the neo-Hookean model.

The results described herein are for fixed values of σ̂fa. Equation (117) gives the corresponding values
of the potential difference and can be used to translate the results to those for a fixed potential difference.

In considering the propagation of axisymmetric electroelastic waves in a tube in the absence of pressure
Shmuel and deBotton [11] obtained results for vanishing wave speed, which corresponds to bifurcation.
Such results can be read off as special cases of the results here corresponding to points in the above
figures where the (dashed) zero pressure curves intersect with the corresponding bifurcation curves. Note,
however, that in [11] an incremental electric field exterior to the body needed to be accounted for.
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Fig. 3. Plots of the axisymmetric bifurcation curves (continuous curves) and the curves of zero pressure (dashed curves)
for the neo-Hookean electroelastic material with L/B = 2.5, σ̂fa = 0, 0.3, 0.6, 0.9: a A/B = 0.85; b A/B = 0.5. The values
of σ̂fa are shown next to the relevant curves, the smaller fonts being associated with the zero pressure curves
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Fig. 4. Plots of the axisymmetric bifurcation curves (continuous curves) and the curves of zero pressure (dashed curves)
for the Mooney–Rivlin electroelastic material with A/B = 0.85, σ̂fa = 0, 0.3, 0.6, 0.9: a L/B = 5; b L/B = 10. The values
of σ̂fa are shown next to the relevant curves, the smaller fonts being associated with the zero pressure curves (to avoid
congestion the smaller labels 0.3 and 0.6 are omitted in b)
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Appendix A. Electroelastic moduli

A.1. Derivatives of the invariants Im , m ∈ {1, 2, 4, 5, 6}, with respect to F and DL

In component form the nonzero first derivatives have the following expressions
∂I1
∂Fiα

= 2Fiα,
∂I2
∂Fiα

= 2(CγγFiα − CαγFiγ),
∂I5
∂Fiα

= 2DLα(FiγDLγ),

∂I6
∂Fiα

= 2(CαβDLβFiγDLγ + DLαFiγCγβDLβ),

∂I4
∂DLα

= 2DLα,
∂I5

∂DLα
= 2CαβDLβ ,

∂I6
∂DLα

= 2C2
αβDLβ .

The nonzero second derivatives with respect to F are

∂2I1
∂Fiα∂Fjβ

= 2δijδαβ ,
∂2I2

∂Fiα∂Fjβ
= 2(2FiαFjβ − FiβFjα + Cγγδijδαβ − bijδαβ − Cαβδij),

∂2I5
∂Fiα∂Fjβ

= 2δijDLαDLβ ,

∂2I6
∂Fiα∂Fjβ

= 2[δij(CαγDLγDLβ + CβγDLγDLα) + δαβFiγDLγFjδDLδ

+FiγDLγFjαDLβ + FjγDLγFiβDLα + bijDLαDLβ ].

The second derivatives of I4, I5, I6 with respect to DL are

∂2I4
∂DLα∂DLβ

= 2δαβ ,
∂2I5

∂DLα∂DLβ
= 2Cαβ ,

∂2I6
∂DLα∂DLβ

= 2C2
αβ ,

where C2
αβ is defined as (C2)αβ .

The mixed derivatives of I1, I2 and I4 with respect to F and DL are equal to zero. For I5, I6 they are

∂2I5
∂Fiα∂DLβ

= 2δαβFiγDLγ + 2DLαFiβ ,

∂2I6
∂Fiα∂DLβ

= 2FiβCαγDLγ + 2FiγDLγCαβ + 2FiγCγβDLα + 2δαβFiγCγδDLδ.

A.2. Electroelastic moduli

We introduce the notation b̄ = I1b − b2, D(1) = bD and D(−1) = b−1D and obtain the following
expressions for the components of the electroelastic moduli tensors:

A∗
0piqj = 4{Ω∗

11bipbjq + Ω∗
12(bipb̄jq + bjq b̄ip) + Ω∗

22b̄ipb̄jq + Ω∗
55DiDjDpDq

+ Ω∗
15(bipDjDq + bjqDiDp) + Ω∗

25(DiDpb̄jq + DjDq b̄ip)

http://creativecommons.org/licenses/by/4.0/
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+ Ω∗
66(D

(1)
i Dp + D(1)

p Di)(D
(1)
j Dq + D(1)

q Dj)

+ Ω∗
16[bip(D

(1)
j Dq + D(1)

q Dj) + bjq(D
(1)
i Dp + D(1)

p Di)]

+ Ω∗
26[b̄ip(D

(1)
j Dq + D(1)

q Dj) + b̄jq(D
(1)
i Dp + D(1)

p Di)]

+ Ω∗
56(D

(1)
p DiDqDj + D

(1)
i DpDqDj + D(1)

q DpDiDj + D
(1)
j DpDiDq)}

+ 2{Ω∗
1δijbpq + Ω∗

2[2bipbjq − biqbjp + δij b̄pq − bijbpq] + Ω∗
5δijDpDq

+ Ω∗
6[δij(D(1)

p Dq + D(1)
q Dp) + bpqDiDj + bjpDiDq + biqDjDp + bijDpDq]},

A
∗
0pi|q = 4[Ω∗

14bipD
(−1)
q + Ω∗

24b̄ipD
(−1)
q + Ω∗

45DiDpD
(−1)
q + Ω∗

46(D
(1)
i Dp + D(1)

p Di)D(−1)
q

+ Ω∗
15bipDq + Ω∗

25b̄ipDq + Ω∗
55DiDpDq + Ω∗

56(D
(1)
p DiDq + D

(1)
i DpDq + D(1)

q DiDp)

+ Ω∗
16bipD

(1)
q + Ω∗

26b̄ipD
(1)
q + +Ω∗

66(D
(1)
i Dp + D(1)

p Di)D(1)
q ]

+ 2[Ω∗
5(δpqDi + δiqDp) + Ω∗

6(δiqD
(1)
p + δpqD

(1)
i + bpqDi + biqDp)],

A∗
0ij = 4[Ω∗

44D
(−1)
i D

(−1)
j + Ω∗

55DiDj + Ω∗
66D

(1)
i D

(1)
j + Ω∗

45(D
(−1)
i Dj + D

(−1)
j Di)

+ Ω∗
46(D

(−1)
i D

(1)
j + D

(−1)
j D

(1)
i ) + Ω∗

56(D
(1)
i Dj + D

(1)
j Di)] + 2(Ω∗

4b
(−1)
ij + Ω∗

5δij + Ω∗
6bij).

With respect to the principal axes of b the previous expressions in terms of principal stretches λ1,
λ2, λ3 and components (D1, D2, D3) of the electric displacement vector D are written as follows, noting
that the indices are such that i �= j �= k �= i:

A∗
0iiii = 2λ2

i [Ω
∗
1 + (λ2

j + λ2
k)Ω∗

2 + λ2
jλ

2
kD2

i (Ω∗
5 + 6λ2

i Ω
∗
6)]

+ 4λ4
i {Ω∗

11 + 2(λ2
j + λ2

k)Ω∗
12 + (λ2

j + λ2
k)2Ω∗

22

+ 2λ2
jλ

2
kD2

i [Ω∗
15 + 2λ2

i Ω
∗
16 + (λ2

j + λ2
k)Ω∗

25 + 2λ2
i (λ

2
j + λ2

k)Ω∗
26]

+λ4
jλ

4
kD4

i (Ω∗
55 + 4λ2

i Ω
∗
56 + 4λ4

i Ω
∗
66)},

A∗
0iiij = 4DiDjλ

2
i {Ω∗

6 + Ω∗
15 + (λ2

j + λ2
k)Ω∗

25 + (λ2
i + λ2

j )[Ω
∗
16 + (λ2

j + λ2
k)Ω∗

26]

+λ2
jλ

2
kD2

i [Ω∗
55 + (3λ2

i + λ2
j )Ω

∗
56 + 2λ2

i (λ
2
i + λ2

j )Ω
∗
66]},

A∗
0iiji = 2DiDj{Ω∗

5 + (λ2
j + 3λ2

i )Ω
∗
6 + 2λ2

i [Ω
∗
15 + (λ2

j + λ2
k)Ω∗

25]

+ 2λ2
i (λ

2
i + λ2

j )[Ω
∗
16 + (λ2

j + λ2
k)Ω∗

26]

+ 2I3D
2
i [Ω∗

55 + (3λ2
i + λ2

j )Ω
∗
56 + 2λ2

i (λ
2
i + λ2

j )Ω
∗
66]},

A∗
0iijj = 4λ2

i λ
2
j{Ω∗

2 + λ2
kΩ∗

3 + Ω∗
11 + (I1 + λ2

k)Ω∗
12 + (I2 + λ4

k)Ω∗
22

+λ2
k(λ2

jD
2
i + λ2

i D
2
j )(Ω∗

15 + λ2
kΩ∗

25) + 2(λ2
i D

2
i + λ2

jD
2
j )Ω∗

26

+ (D2
i + D2

j )(2Ω∗
16 + Ω∗

25 + 2λ2
kΩ∗

26) + λ2
kD2

i D2
j [Ω∗

55 + 2(λ2
i + λ2

j )Ω
∗
56 + 4λ2

i λ
2
jΩ

∗
66]},

A∗
0ijij = 2λ2

i {Ω∗
1 + λ2

kΩ∗
2 + D2

i λ2
jλ

2
kΩ∗

5 + λ2
jλ

2
k(2D2

i λ2
i + D2

i λ2
j + D2

j λ2
i )Ω

∗
6

+2D2
i D2

j λ2
jλ

2
k[Ω∗

55 + 2(λ2
i + λ2

j )Ω
∗
56 + (λ2

i + λ2
j )

2Ω∗
66]},
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A∗
0ijji = 2λ2

i λ
2
j{−Ω∗

2 + λ2
k(λ2

jD
2
i + λ2

i D
2
j )Ω∗

6

+ 2D2
i D2

j λ2
k[Ω∗

55 + 2(λ2
i + λ2

j )Ω
∗
56 + (λ2

i + λ2
j )

2Ω∗
66]},

A∗
0iijk = 4DjDkλ2

i {Ω∗
15 + (λ2

j + λ2
k)(Ω∗

25 + Ω∗
16) + (λ2

j + λ2
k)2Ω∗

26

+D2
i λ2

jλ
2
k[Ω∗

55 + (I1 + λ2
i )Ω

∗
56 + 2λ2

i (λ
2
j + λ2

k)Ω∗
66]},

A∗
0ijki = A0ijik = 2DjDk{λ2

i Ω
∗
6 + 2D2

i [Ω∗
55 + (I1 + λ2

i )Ω
∗
56 + (I2 + λ4

i )Ω
∗
66]},

A∗
0jiki = 2DjDk{Ω∗

5 + I1Ω∗
6 + 2D2

i [Ω∗
55 + (I1 + λ2

i )Ω
∗
56 + (I2 + λ4

i )Ω
∗
66]},

A
∗
0ii|i = 4Di{Ω∗

5 + 2λ2
i Ω

∗
6 + Ω∗

14 + λ2
i Ω

∗
15 + λ4

i Ω
∗
16 + (λ2

j + λ2
k)(Ω∗

24 + λ2
i Ω

∗
25 + λ4

i Ω
∗
26)

+D2
i λ2

jλ
2
k[Ω∗

45 + λ2
i Ω

∗
55 + λ4

i Ω
∗
56 + 2λ2

i (Ω
∗
46 + λ2
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∗
56 + λ4

i Ω
∗
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A
∗
0ii|j = 4Djλ

2
i λ

−2
j {Ω∗

14 + λ2
jΩ

∗
15 + λ4

jΩ
∗
16 + (λ2

j + λ2
k)(Ω∗

24 + λ2
jΩ

∗
25 + λ4

jΩ
∗
26)

+D2
i λ2

jλ
2
k[Ω∗

45 + λ2
jΩ

∗
55 + λ4

jΩ
∗
56 + 2λ2

i (Ω
∗
46 + λ2

jΩ
∗
56 + λ4

jΩ
∗
66)]},

A
∗
0ij|i = 2Dj{Ω∗

5 + (λ2
i + λ2

j )Ω
∗
6 + 2D2

i λ2
jλ

2
k[Ω∗

45 + λ2
i Ω

∗
55 + λ4

i Ω
∗
56

+ (λ2
i + λ2

j )(Ω
∗
46 + λ2

i Ω
∗
56 + λ4

i Ω
∗
66)]},

A
∗
0ij|k = 4DiDjDkλ2

i λ
2
j [Ω

∗
45 + λ2

kΩ∗
55 + λ4

kΩ∗
56 + (λ2

i + λ2
j )(Ω

∗
46 + λ2

kΩ∗
56 + λ4

kΩ∗
66)],

A∗
0ii = 2λ−2

i {Ω∗
4 + λ2

i Ω
∗
5 + λ4

i Ω
∗
6 + 2D2

i λ2
jλ
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k[Ω∗

44 + λ2
i Ω

∗
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i Ω
∗
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∗
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i Ω
∗
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i Ω
∗
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∗
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∗
56 + λ4

i Ω
∗
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0ij = 4DiDjλ

2
k[Ω∗

44 + λ2
i Ω

∗
45 + λ4

i Ω
∗
46 + λ2

j (Ω
∗
45 + λ2

i Ω
∗
55 + λ4

i Ω
∗
56)

+λ4
j (Ω

∗
46 + λ2

i Ω
∗
56 + λ4

i Ω
∗
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Appendix B. Electroelastic moduli for the specific energy functions

B.1. Prismatic bifurcations

For prismatic bifurcations the electroelastic moduli specialized for neo-Hookean electroelastic material
(115) are

A∗
03131 = A∗

03333 = μλ2
3 + D2

3/ε, A∗
01313 = A∗

01111 = μλ2
1, A∗

01331 = A∗
01133 = 0,

2A∗
013|1 = A

∗
033|3 = 2D3/ε, A

∗
011|3 = 0, A∗

011 = A∗
033 = 1/ε.

In nondimensional form the nonzero moduli can be expressed as functions of r̂ as follows:

Â∗
03131 = Â∗

03333 = [λ−1
z (r̂2 − â2) + λ−2

z + σ̂2
faâ2]/r̂2, Â∗

01313 = Â∗
01111 = r̂2/[λz(r̂2 − â2) + 1],

2Â∗
013|1 = Â

∗
033|3 = 2â/r̂, Â∗

011 = Â∗
033 = 1.
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B.2. Axisymmetric bifurcations

B.2.1. Moduli for the neo-Hookean model. The electroelastic moduli take the following values for energy
function (115):

A∗
03131 = A∗

03232 = A∗
03333 = μλ2

3 + D2
3/ε, A∗

02222 = A∗
02323 = μλ2

2,

A∗
01111 = A01313 = μλ2

1, A∗
01122 = A∗

01133 = A∗
03223 = A∗

02233 = A∗
01331 = 0,

A
∗
033|3 = 2A∗

023|2 = 2D3/ε, A
∗
022|3 = A

∗
011|3 = 0, A∗

022 = A∗
033 = 1/ε,

and in nondimensional form the nonzero ones are

Â∗
03131(r̂) = Â∗

03232(r̂) = Â∗
03333(r̂) = [λ−1

z (r̂2 − â2) + λ−2
z + σ̂2

faâ2]/r̂2,

Â∗
02222(r̂) = Â∗

02323(r̂) = λ2
z, Â∗

01111(r̂) = Â∗
01313(r̂) = r̂2/[λz(r̂2 − â2) + 1],

Â
∗
033|3(r̂) = 2Â∗

023|2(r̂) = 2â/r̂, Â∗
022(r̂) = Â∗

033(r̂) = 1.

B.2.2. Moduli for the Mooney–Rivlin model. For Mooney–Rivlin model (160) the electroelastic moduli
specialize to

A∗
03131 = μ1λ

2
3 − μ2λ

−2
1 + D2

3/ε, A∗
03232 = μ1λ

2
3 − μ2λ

−2
2 + D2

3/ε,

A∗
03333 = μ1λ

2
3 − μ2λ

2
3(λ

2
1 + λ2

2) + D2
3/ε, A∗

01313 = μ1λ
2
1 − μ2λ

2
2, A∗

01122 = −2μ2λ
2
1λ

2
2,

A∗
01133 = −2μ2λ

2
1λ

2
3, A∗

03223 = μ2λ
2
3λ

2
2, A∗

02233 = −2μ2λ
2
2λ

2
3, A∗

01331 = μ2λ
2
1λ

2
3,

A∗
02222 = μ1λ

2
2 − μ2λ

2
2(λ

2
1 + λ2

3), A∗
02323 = μ1λ

2
2 − μ2λ

2
1λ

2
2, A∗

01111 = μ1λ
2
1 − μ2λ

2
1(λ

2
2 + λ2

3),

A
∗
033|3 = 2D3/ε, A

∗
023|2 = D3/ε, A

∗
022|3 = 0, A

∗
011|3 = 0, A∗

022 = A∗
033 = 1/ε.

With μ1 = 0.8μ and μ2 = −0.2μ, the nonzero terms have nondimensional forms in terms of r̂ as

Â∗
03131(r̂) = {0.8[λ−1

z (r̂2 − â2) + λ−2
z ] + 0.2[λz(r̂2 − â2) + 1] + σ̂2

faâ2}/r̂2,

Â∗
03232(r̂) = {0.8[λ−1

z (r̂2 − â2) + λ−2
z ] + σ̂2

faâ2}/r̂2 + 0.2λ−2
z ,

Â∗
03333(r̂) = {0.8[λ−1

z (r̂2 − â2) + λ−2
z ] + 0.2[λz(r̂2 − â2) + 1] + σ̂2

faâ2}/r̂2 + 0.2λ−2
z ,

Â∗
01313(r̂) = [0.8λ−2

z + 0.2]r̂2/[λ−1
z (r̂2 − â2) + λ−2

z ], Â∗
01122(r̂) = 0.4r̂2/[λ−1

z (r̂2 − â2) + λ−2
z ],

Â∗
01133(r̂) = 0.4λ−2

z , Â∗
03223(r̂) = −0.2[λz(r̂2 − â2) + 1]/r̂2,

Â∗
02233(r̂) = 0.4[λz(r̂2 − â2) + 1]/r̂2, Â∗

01331(r̂) = −0.2λ−2
z

Â∗
02222(r̂) = 0.8λ2

z + 0.2{r̂2/[λ−1
z (r̂2 − â2) + λ−2

z ] + [λz(r̂2 − â2) + 1]/r̂2},

Â∗
02323(r̂) = 0.8λ2

z + 0.2r̂2/[λ−1
z (r̂2 − â2) + λ−2

z ],

Â∗
01111(r̂) = 0.8r̂2/[λz(r̂2 − â2) + 1] + 0.2r̂2/[λ−1

z (r̂2 − â2) + λ−2
z ] + 0.2λ−2

z ,

Â
∗
033|3(r̂) = 2â/r̂, Â

∗
023|2(r̂) = â/r̂, Â∗

022(r̂) = 1, Â∗
033(r̂) = 1.

The required derivatives with respect to r̂ of the electroelastic moduli are

Â∗′
03131(r̂) =

−1.6 + 1.6λz â
2 − (0.4 + 2σ̂2

faâ2)λ2
z + 0.4â2λ3

z

r̂3λ2
z

,

Â∗′′
03131(r̂) =

4.8 − 4.8â2λz + (1.2 + 6â2σ̂2
fa)λ2

z − 1.2â2λ3
z

r̂4λ2
z

,

Â∗′
03232(r̂) =

−1.6 + 1.6â2λz − 2â2σ̂2
faλ2

z

r̂3λ2
z

, Â∗′′
03232(r̂) =

4.8 + â2λz(−4.8 + 6σ̂2
faλz)

r̂4λ2
z

,
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Â∗′
01313(r̂) =

r̂(1.6 − 1.6â2λz + 0.4λ2
z − 0.4â2λ3

z)
[1 + (−â2 + r̂2)λz]2

,

Â∗′
03223(r̂) =

0.4 − 0.4â2λz

r̂3
, Â∗′′

03223(r̂) =
−1.2 + 1.2â2λz

r̂4
, Â∗′

02233(r̂) =
−0.8 + 0.8â2λz

r̂3
,

Â∗′
03333(r̂) =

(1.6 + 0.4λ2
z)(â

2λz − 1) − 2σ̂2
faλ2

zâ
2

r̂3λ2
z

,

Â∗′
01122(r̂) =

0.8(1 − λzâ
2)r̂λ2

z

[1 + λz(r̂2 − â2)]2
,

Â∗′
02222(r̂) = −0.4(λz â

2 − 1)2(2λz r̂
2 − λzâ

2 + 1)/{r̂3[1 + λz(r̂2 − â2)]2}
Â

∗′
033|3(r̂) = −2â/r̂2, Â

∗′
023|2(r̂) = −â/r̂2.
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