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Abstract

In this paper the influence of a radial electric field generated by compliant electrodes on the curved surfaces of a tube of dielectric
electroelastic material subject to radially symmetric finite deformations is analyzed within the framework of the general theory of
nonlinear electroelasticity. The analysis is illustrated for two constitutive equations based on the neo-Hookean and Gent elasticity
models supplemented by an electrostatic energy term with a deformation dependent permittivity.
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1. Introduction

A recent paper by Melnikov and Ogden [1] was concerned
with the analysis of the extension and inflation of a circular
cylindrical tube of dielectric elastomer material subject to a ra-
dial electric field produced by a potential difference between
compliant electrodes on its curved surfaces. The dielectric
properties of the material were defined by a constant permittiv-
ity, and we refer to [1] for discussion of the relevant background
references and motivation. In the present work we extend that
analysis to take additional account of torsion applied to the tube
and, importantly, to allow for the permittivity of the material to
be deformation dependent, in recognition of experimental find-
ings of such dependence (see, for example, [2, 3]). Aspects of
the modelling of strain-dependent permittivity have been exam-
ined in [4, 5, 6], for example.

In Section 2 we summarize briefly the basic equations of the
theory of nonlinear electroelasticity that are needed for the sub-
sequent analysis. Then, in Section 3, the equations are special-
ized to the geometry of a circular cylindrical tube subject to ex-
tension, inflation and torsion in the presence of a radial electric
field. Irrespective of the particular form of the electroelastic
constitutive law for the material of the tube, general formulas
are obtained for the internal pressure, reduced axial load and
torsional moment. The more restricted problem of a circular
cylindrical tube subject to an axial load and a radial electric
field, without internal pressure or torsion, was discussed in [7].

The general results are applied in Section 4 to the neo-
Hookean elastic model with an electrostatic energy depending
on a deformation dependent permittivity. For this model analyt-

ical solutions are obtained for the pressure, reduced axial load
and torsional moment in terms of the deformation and electric
parameters. The results highlight, in particular, the strong in-
fluence of both the deformation dependent permittivity and the
torsion in comparison with the results for zero torsion and con-
stant permittivity obtained in [1].

The Gent model [8] provides an alternative form of the elas-
tic part of the energy function and, by contrast with the neo-
Hookean model, accounts for the rapidly stiffening response of
the material at large deformations. For this reason, Section 5
provides details of results for the Gent model analogous to those
in Section 4, the differences associated with the strain stiffening
being highlighted. Section 6 contains a few closing remarks.

In paying tribute to the memory of Gérard Maugin, we would
particularly like to acknowledge the influence of his works sum-
marized in the volumes [9, 10].

2. Basic equations

2.1. Kinematics

Consider a material body in a stress-free undeformed con-
figuration that is used as the reference configuration Br with
boundary ∂Br. Let a typical material point in this configuration
be identified by its position vector X. The configuration and
boundary of the body, after deformation fromBr, are denotedB
and ∂B, respectively. The corresponding position vector is de-
noted x and the quasi-static deformation from Br to B is written
x = χ(X), where the vector function χ defines the deforma-
tion. It follows that the deformation gradient tensor F is given
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by F = Gradχ(X), where Grad is the gradient operator with
respect to X. For incompressible materials, to which attention
is confined here, the constraint det F = 1 must be satisfied.

Associated with F are the right and left Cauchy–Green de-
formation tensors, denoted C and B respectively and defined by

C = FTF, B = FFT, (1)

where T signifies the transpose of a second-order tensor. For
full details of finite deformation theory we refer to the standard
text [11].

2.2. Maxwell’s static equations for a dielectric
The Eulerian form of the electric field vector is denoted by E

and the associated electric displacement by D. For a quasi-static
deformation in the absence of magnetic fields and distributed
currents, Maxwell’s equations for a dielectric material reduce
to

curlE = 0, divD = 0, (2)

which also hold in free space. Here, the curl and div operators
relate to the deformed configuration B. The vectors, D and
E are related by a constitutive equation, details of which are
provided in Section 2.3, but in free space they are simply related
by D = ε0E, where the constant ε0 is the electric permittivity of
free space.

The boundary conditions associated with (2) have the stan-
dard forms

n × (E? − E) = 0, n · (D? − D) = σf , (3)

where E? and D? denote the fields exterior to the material, σf
is the free surface charge per unit area of ∂B and n is the unit
outward normal to ∂B.

For what follows, it is convenient to introduce the Lagrangian
quantities defined by

EL = FTE, DL = F−1D, (4)

where the subscript L signifies ‘Lagrangian’. The Eulerian field
equations (2) can then be written equivalently in Lagrangian
form

CurlEL = 0, DivDL = 0, (5)

where Curl and Div are the curl and divergence operators with
respect to X. These equations are associated with boundary
conditions on ∂Br analogous to (3), but these will not be used
here. For full details we refer to the monograph [12].

2.3. Electroelasticity
A history of the development of the nonlinear theory of con-

tinuum electromechanics is summarized in the recent review
article [13]. The article describes in some detail the theory
of electroelasticity and includes the solution of some represen-
tative boundary-value problems. Some details of experiments
relating to the large deformation electromechanical effects in
elastomeric dielectrics and their use in actuators are also given.
Full details of the nonlinear theory of electroelasticity are pro-
vided in [14] and [12], while the influence of an electric field
on the mechanical response of an incompressible isotropic elas-
tomeric dielectric on the solution of a number of boundary-
value problems has been discussed in [15].

2.3.1. Equilibrium equations and boundary conditions
From the general theory [12], the equilibrium equation can

be written in the form

divτ + ρf = 0 in B, (6)

where τ is the total Cauchy stress tensor, which is symmetric, ρ
is the mass density of the material in the deformed configuration
and f is the mechanical body force per unit mass.

Similarly to the connection between the nominal stress and
Cauchy stress in pure elasticity theory, the total nominal stress
tensor, denoted T, is defined (for an incompressible material)
by T = F−1τ, and in terms of T the equilibrium equation (6)
can be written in the equivalent form

DivT + ρf = 0, (7)

noting that, by incompressibility, ρ is also the density in the
reference configuration.

The traction boundary condition associated with the equilib-
rium equation (6) at a point on ∂B where the mechanical trac-
tion is given has the form

τn = ta + t?m on ∂B, (8)

where ta is the applied mechanical traction and t?m is the traction
due to the exterior electric field given by t?m = τ?mn in terms of
the Maxwell stress tensor τ?m evaluated on the exterior of ∂B as

τ?m = ε0E? ⊗ E? −
1
2
ε0

(
E? · E?

)
I, (9)

where I is the identity tensor.
The traction boundary condition may also be written in La-

grangian form based on Eq. (7) but it will not be used here.
Details are given in [12].

2.3.2. Constitutive equations
A compact way to express constitutive equations in nonlinear

electroelasticity is by using either EL or DL as the independent
electric vector variable, and for full details we refer to [14] and
[12]. Here we adopt DL together with a so-called total electroe-
lastic energy function Ω∗(F,DL), which, by objectivity, depends
on F via the right Cauchy–Green tensor (1)1. The total nominal
and Cauchy stress tensors T and τ are given by

T =
∂Ω∗

∂F
− p∗F−1, τ = F

∂Ω∗

∂F
− p∗I, (10)

where p∗ is a Lagrange multiplier associated with the incom-
pressibility constraint det F = 1.

The corresponding expressions for EL and E are

EL =
∂Ω∗

∂DL
, E = F−T ∂Ω∗

∂DL
. (11)

2.3.3. Isotropic electroelasticity
The electroelastic material considered here is said to be

isotropic if Ω∗ is an isotropic function of the two tensors C and
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DL ⊗ DL, in which case Ω∗ depends on five invariants of C and
DL ⊗ DL, here denoted I1, I2, I4, I5, I6 and defined by

I1 = trC, I2 =
1
2

[I2
1 − tr (C2)], (12)

I4 = DL · DL, I5 = DL · (CDL) , I6 = DL ·
(
C2DL

)
. (13)

It then follows that

τ = 2Ω∗1B + 2Ω∗2

(
I1B − B2

)
− p∗I + 2Ω∗5D ⊗ D

+ 2Ω∗6 (D ⊗ BD + BD ⊗ D) , (14)

and
E = 2

(
Ω∗4B−1D + Ω∗5D + Ω∗6BD

)
, (15)

where Ω∗i defined as ∂Ω∗/∂Ii for i = 1, 2, 4, 5, 6.
We now write Eq. (15) in the form D = εE, where ε is the

permittivity tensor, which depends on both the deformation and
D in general, and whose inverse can be seen from (15) to be
given by

ε−1 = 2(Ω∗4B−1 + Ω∗5I + Ω∗6B). (16)

For the particular model used in [16], we have Ω∗4 = ε−1
0 α/2,

Ω∗5 = ε−1
0 β/2, Ω∗6 = 0, where α and β are dimensionless con-

stants, and (16) becomes

ε−1 = ε−1
0 (αB−1 + βI). (17)

Note that if α = 0 then β−1 = ε/ε0 is the constant relative
permittivity of a material with isotropic dielectric properties.

3. Application to a thick-walled tube

Having established the constitutive law in terms of a La-
grangian variable, it is convenient for the problem considered
below to use the expressions for the Eulerian fields given in
(14) and (15) and to ensure that Eqs. (2) and (6) are satisfied.

3.1. Combined extension, inflation and torsion
We now apply the foregoing theory to the deformation con-

sisting of axial extension, radial inflation and torsion of a thick-
walled circular cylindrical tube, the underlying theory for which
has been well known since the seminal contributions of Rivlin
[17, 18]. Here we summarize the main ingredients of the the-
ory ready for the incorporation of a radial electric field in the
following subsection. We note in passing that for a piezoelec-
tric material in the presence of a radial electric field this defor-
mation was first examined in [19] in the context of a study of
controllable deformations.

The reference geometry of the tube is described in terms of
cylindrical polar coordinates (R,Θ,Z), associated with unit ba-
sis vectors ER,EΘ,EZ , by

0 < A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (18)

where A and B are the internal and external radii and L is the
length of the tube. The position vector X of a point of the tube
is given by X = RER + ZEZ .

The corresponding deformed geometry is defined by

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l (19)

in terms of cylindrical polar coordinates (r, θ, z) associated with
unit basis vectors er, eθ, ez, the position vector x in the deformed
tube is written x = rer + zez, and the deformation is defined by

r = f (R) ≡
√

a2 + λ−1
z (R2 − A2), θ = Θ + ψλzZ, z = λzZ,

(20)
in which the first term results from incompressibility, λz is the
(uniform) axial stretch, and the constant ψ is the torsion per unit
deformed length of the tube. Note that b = f (B) and l = λzL.

The associated deformation gradient tensor F takes the form

F = λr er ⊗ ER + λθ eθ ⊗ EΘ + λz ez ⊗ EZ + λzγ eθ ⊗ EZ , (21)

where the notation γ is defined as γ = ψr, while λθ = r/R and,
by incompressibility, λr = λ−1

θ λ
−1
z . The deformation tensors (1)

specialize to

C = λ2
r ER ⊗ ER + λ2

θEΘ ⊗ EΘ + λ2
z (1 + γ2)EZ ⊗ EZ

+ γλzλθ(EΘ ⊗ EZ + EZ ⊗ EΘ),

B = λ2
r er ⊗ er + (λ2

θ + γ2λ2
z )eθ ⊗ eθ + λ2

z ez ⊗ ez

+ γλ2
z (eθ ⊗ ez + ez ⊗ eθ). (22)

3.2. Electric field components and boundary conditions
Flexible electrodes are affixed to the surfaces R = A and

R = B across which is applied a potential difference, accompa-
nied by equal and opposite charges on the electrodes totalling
Q and −Q, respectively. Then, by Gauss’s theorem, no field is
generated outside the tube, assuming that the geometry is such
that end effects can be neglected.

For this problem the independent Lagrangian electric dis-
placement field DL has only a radial component DR = DR(R),
a function of R only, and, by (4)2, the corresponding Eulerian
field has only the single component Dr(r), which is given by
Dr = λrDR. Equation (2) then reduces to d(rDr)/dr = 0, so that
rDr(r) is constant, and hence rDr(r) = aDr(a) = bDr(b). With
reference to the boundary condition (3)2, the surface charge per
unit deformed area is Q/(2πal), and hence Dr(a) = Q/(2πal)
and

Dr(r) =
Q

2πrl
. (23)

The invariants defined in (12) and (13) specialize to

I1 = λ−2
z λ−2

θ + λ2
θ + λ2

z (1 + γ2), I2 = λ2
zλ

2
θ + λ−2

θ (1 + γ2) + λ−2
z ,

(24)
and

I4 = D2
R = λ2

θλ
2
z D2

r , I5 = λ−2
θ λ

−2
z I4, I6 = λ−4

θ λ
−4
z I4. (25)

From (15) it follows that E has only a radial component,
Er(r), which is given by

Er = 2
(
Ω∗4λ

2
θλ

2
z + Ω∗5 + Ω∗6λ

−2
θ λ

−2
z

)
Dr, (26)

and Eq. (2)1 is automatically satisfied.
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3.3. Specialization of the constitutive equations and mechani-
cal equilibrium

The components of the total Cauchy stress tensor are now
obtained by specializing Eq. (14) to obtain τrθ = τrz = 0,

τrr = 2Ω∗1λ
−2
θ λ

−2
z + 2Ω∗2

((
1 + γ2

)
λ−2
θ + λ−2

z

)
− p∗

+ 2Ω∗5D2
r + 4Ω∗6λ

−2
θ λ

−2
z D2

r , (27)

τθθ = 2Ω∗1(λ2
θ + γ2λ2

z ) + 2Ω∗2

(
λ2
θλ

2
z + γ2λ−2

θ + λ−2
z

)
− p∗, (28)

τzz = 2Ω∗1λ
2
z + 2Ω∗2

(
λ2
θλ

2
z + λ−2

θ

)
− p∗, (29)

τθz = 2Ω∗1γλ
2
z + 2Ω∗2γλ

−2
θ . (30)

The invariants (24) and (25) depend on three independent de-
formation variables λθ, λz and γ, together with I4. It is therefore
convenient to introduce a reduced energy function, denoted ω∗

and defined by

ω∗(λθ, λz, γ, I4) = Ω∗(I1, I2, I4, I5, I6), (31)

where, on the right-hand side, the invariants are given by (24)
and (25). A straightforward calculation based on Eqs. (27)–(30)
leads to

τθθ−τrr = λθ
∂ω∗

∂λθ
+γ

∂ω∗

∂γ
, τzz−τrr = λz

∂ω∗

∂λz
−γ

∂ω∗

∂γ
, τθz =

∂ω∗

∂γ
,

(32)
Similarly, in terms of ω∗, Eq. (26) simplifies to

Er = 2λ2
θλ

2
z
∂ω∗

∂I4
Dr. (33)

Because of the radial symmetry, the equilibrium equation (6)
in the absence of mechanical body forces specializes to the sin-
gle (radial) component

r
dτrr

dr
= τθθ − τrr. (34)

There is no electric field outside the tube, and hence no
Maxwell stress, and any traction on r = a and r = b is purely
due to applied mechanical loads. We assume that there is no
such load on r = b and that the load on r = a is due to an inter-
nal pressure P (per unit area). Thus, τrr = −P and 0 on r = a
and r = b, respectively. Integration of (34) after substitution
from (32)1 then leads to

P =

∫ b

a

(
λθ
∂ω∗

∂λθ
+ γ

∂ω∗

∂γ

)
dr
r
. (35)

The shear stress σθz generates a torsional moment M on any
cross section of the tube, which, on use of (32)3, is given by

M = 2π
∫ b

a
τθzr2dr = 2π

∫ b

a

∂ω∗

∂γ
r2dr. (36)

An axial load is also generated. For a tube with closed ends,
after removal of the effect of P on the ends, the resultant, de-
noted F, is known as the reduced axial load, which, by a stan-
dard calculation and use of (32), has the form

F = π

∫ b

a
(2τzz − τrr − τθθ) rdr

= π

∫ b

a

(
2λz

∂ω∗

∂λz
− λθ

∂ω∗

∂λθ
− 3γ

∂ω∗

∂γ

)
rdr. (37)

In the following two sections, for purposes of illustration, we
consider the energy function ω∗(λθ, λz, γ, I4) to be decomposed
in the form

ω∗(λθ, λz, γ, I4) = ωm(λθ, λz, γ) + ωe(λθ, λz, γ, I4), (38)

where ωm is a purely mechanical (elastic) energy function and
ωe is the energy associated with the electric field, which may in
general also depend on the deformation. Both functions will be
specialized in the next two sections.

4. Application to the neo-Hookean model

In this section we assume that ωm is given as the neo-
Hookean model, so that

ωm =
1
2
µ(I1 − 3) =

1
2
µ
[
λ−2
θ λ

−2
z + λ2

θ + λ2
z (1 + γ2) − 3

]
, (39)

where the constant µ (> 0) is the shear modulus of the material
in the reference configuration.

4.1. Deformation dependent permittivity

For the electric contribution we first consider the isotropic
constitutive law with constant permittivity ε, i.e. D = εE,
for which the electrostatic energy is D · D/(2ε), or in terms
of DL, DL · (CDL)/(2ε). For the present situation this becomes
λ2

r D2
R/(2ε), and hence

ωe =
1
2ε
λ−2
θ λ

−2
z I4. (40)

In respect of the more general expression (17) this is replaced
by

ωe =
1

2ε0
(α + βλ−2

θ λ
−2
z )I4, (41)

where α (> 0) is a measure of the deformation dependence of
the permittivity, while β (> 0) becomes ε0/ε when α = 0. Note
that evaluation in the reference configuration gives the relative
permittivity 1/(α + β), which must be greater than 1 for all
electro-active materials, as noted in [16]. Thus, α+β < 1 for this
model, which was introduced in [16] to reflect the experimental
evidence noted in, for example, [2, 3] that the permittivity of
a thin film of dielectric elastomer decreases as the thickness of
the film decreases, i.e. as the strain increases.

The expression (41) does not include any dependence on γ,
and it therefore needs to be modified if such a dependence turns
out to be necessary. For such an eventuality we now consider
the α term to depend on I1 = λ−2

θ λ
−2
z + λ2

θ + λ2
z (1 + γ2) in the

form

ωe =
1

2ε0
[α(I1 − 3) + βλ−2

θ λ
−2
z ]I4, (42)

noting that I1 ≥ 3, with equality holding only in the undeformed
configuration. In the undeformed configuration the relative per-
mittivity becomes β−1 and we must have β < 1 for this model,
but no immediate restriction is placed on α in this case.
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4.2. Pressure, moment and axial force

To evaluate the integrals for P, M and F in (35), (36) and
(37), respectively, in respect of (39) and (42) the expressions

λθ
∂ω∗

∂λθ
= µ

(
λ2
θ − λ

−2
θ λ

−2
z

)
− ε−1

0

[
αλ2

θ − (α + β)λ−2
θ λ

−2
z

]
I4, (43)

λz
∂ω∗

∂λz
= µ

[
λ2

z

(
1 + γ2

)
− λ−2

θ λ
−2
z

]
− ε−1

0

[
αλ2

z (1 + γ2) − (α + β)λ−2
θ λ

−2
z

]
I4, (44)

γ
∂ω∗

∂γ
= (µ + ε−1

0 αI4)λ2
zγ

2, (45)

are needed. We also note that, as required for (33),

∂ω∗

∂I4
=

1
2ε0

[
α(I1 − 3) + βλ−2

θ λ
−2
z

]
. (46)

It is now convenient to decompose the expressions for P, M
and F as

P = Pm + Pe, M = Mm + Me, F = Fm + Fe (47)

in respect of their contributions from ωm and ωe. With the help
of (43)–(45), the definitions γ = ψr, λθ = r/R, I4 = D2

R, with
DR = Q/(2πLR), and Eq. (20), each expression in (47) can be
integrated explicitly. For this purpose we introduce the notation

q =

( Q
2πAL

)2

, (48)

so that I4 = qA2/R2. We also use the notations defined by η =

B/A, ψ∗ = ψA, λa = a/A and λb = b/B, with the connection
λ2

b = [λ2
a + (η2 − 1)/λz]/η2, which is obtained from (20)1 with

b = f (B).
First, we obtain

Pm =
µ

2

 2
λz

log
(
λa

λb

)
+ λzψ

∗2
(
η2 − 1

)
−

(
η2 − 1

) (
1 − λ2

aλz

)
η2λ3

zλ2
aλ

2
b

 ,
(49)

Pe =
q

2ε0

αη2 − 1
λzη2 − (α + β)

η2 − 1
λ3

zλ2
aλ

2
b

+ 2αλzψ
∗2 log η

 . (50)

Next,

Mm =
1
2
πµψ∗λzA3

(
λ2

a + λ2
bη

2
) (
η2 − 1

)
, (51)

Me =
1
ε0
παqψ∗A3[2(λ2

aλz − 1) log η + η2 − 1]. (52)

Finally,

Fm = πµA2
[(
λz − λ

−2
z

) (
η2 − 1

)
− λ−2

z

(
λ2

aλz − 1
)

log
(
λa

λb

)
−

1
4
λzψ

∗2
(
η2 − 1

) (
λ2

a + η2λ2
b

)]
, (53)

Fe = πA2 q
ε0

{[
2α(λz − λ

−2
z ) − βλ−2

z

]
log η

− 1
2αλ

−2
z (λ2

aλz − 1)
η2 − 1
η2 + (α + β)λ−2

z log
(
λa

λb

)
− 1

2αψ
∗2

[
η2 − 1 + 2(λ2

aλz − 1) log η
]}
. (54)

Note that equivalent expressions for the elastic parts of P and F
were given in [1] for the case ψ∗ = 0.

From Eq. (2)1 it follows that E = −gradφ, where the scalar
field φ is known as the electrostatic potential. In the present
context this has only a radial component Er = −dφ/dr, and
hence, by (33),

dφ
dr

= −2λ2
θλ

2
z
∂ω∗

∂I4
Dr, (55)

which, on integration and substitution from (46) and (23), gives
the potential difference between the electrodes as

φ(b) − φ(a) = −
Q

2πε0l

∫ b

a

[
α(I1 − 3)λ2

θλ
2
z + β

] dr
r
. (56)

Integration results in the connection between q and the po-
tential difference and yields

φ(b) − φ(a) = −

√
qA

ε0λz

{
(α + β) log

(
ηλb

λa

)

+ α

[
(λ3

z − 3λz + 1) log η +
1
2

(λ2
aλz − 1)

η2 − 1
η2

+ (λ2
aλz − 1)λ2

zψ
∗2 log η +

1
2
λ2

zψ
∗2(η2 − 1)

]}
= −

√
qA

ε0λz
s, (57)

where the shorthand notation s is introduced to represent the
term enclosed by the curly brackets.

The notation E0 is now used for the mean value of the electric
field. It is given by

E0 =
φ(b) − φ(a)

B − A
, (58)

which is a measure of the potential difference, related to q by

q =
ε2

0E2
0λ

2
z (η − 1)2

s2 , (59)

a particular case of which corresponding to deformation inde-
pendent permittivity was derived in [1]. From this connection,
q in the expressions for Pe, Me and Fe in (50), (52) and (54),
which define their dependence on the charge, can be replaced
by E0 to determine their dependence on the potential difference.

4.3. Numerical illustrations
To illustrate the results it is convenient to define the following

additional dimensionless quantities:

P∗ =
P
µ
, F∗ =

F
πµA2 , M∗ =

M
πµA3 , (60)

q∗ =
q
µε0

, e∗ =
ε0E2

0

µ
. (61)
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The dielectric parameters in (42) are taken to have the represen-
tative values α = 0.25 and β = 0.5 in all the examples.

Figure 1 shows the dependence of the dimensionless form of
the pressure P∗ on the stretch λa for a tube with η = B/A = 1.3
and fixed axial stretch λz = 1.2. Results are obtained from (49)
and (50) with P = Pm + Pe for fixed values of ψ∗ = 0, 0.5, 1 (the
first, second and third rows, respectively). In each panel of the
left-hand column the plots are for q∗ = 0, 5, 10, 20, and in the
right-hand column for e∗ = 0, 5, 10, 20, in each case depicted
by the continuous, dashed, dotted and dashed-dotted curves, re-
spectively.
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Figure 2: A neo-Hookean dielectric with deformation dependent permittivity, α = 1/4, β =
1/2. Variations of the dimensionless pressure P ∗ as a function of the stretch λa for q∗ =
0, 5, 10, 20 (left column) and e∗ = 0, 5, 10, 20 (right column), depicted by solid, dashed,
dotted and dashed-dotted lines, respectively. The panels correspond to ψ∗ = 0, 0.5, 1, top
to bottom. The thickness ratio η = 1.3.
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Figure 1: Plots of the dimensionless pressure P ∗ as a function of the stretch λa for a neo-
Hookean dielectric with deformation dependent permittivity. Plots for q∗ = 0, 5, 10, 20
(left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column) are depicted by continuous,
dashed, dotted and dashed-dotted curves, respectively, in each panel. The first, second
and third rows correspond to ψ∗ = 0, 0.5, 1, respectively.

The dependence of P ∗ on the charge density via q∗ is illustrated in the
left-hand column. At P ∗ = 0 the inner radius increases with q∗, the increase
being largest in the absence of any torsion (as measured by ψ∗). As in the
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Figure 1: Plots of the dimensionless pressure P∗ as a function of the stretch λa
for a neo-Hookean dielectric with deformation dependent permittivity. Plots for
q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column)
are depicted by continuous, dashed, dotted and dashed-dotted curves, respec-
tively, in each panel. Panels (a) and (b) are for the case with no torsion (ψ∗ = 0);
panels (c) and (d) correspond to ψ∗ = 0.5; for panels (e) and (f), ψ∗ = 1.

The continuous curves, which correspond to q∗ = 0 or e∗ = 0,
represent the purely elastic responses and they coincide for each
value of ψ∗. When ψ∗ = 0, since λz is fixed at 1.2, inflation is
initiated at P∗ = 0 with λa < 1, but an increase in ψ∗ when
P∗ = 0 reduces the value of λa and therefore requires a higher
pressures to inflate the tube to the same radius as for ψ∗ = 0.

The dependence of P∗ on the charge density via q∗ is illus-
trated in the left-hand column. At P∗ = 0 the inner radius in-
creases with q∗, the increase being largest in the absence of any
torsion (as measured by ψ∗). As in the mechanical case, an ap-
plied torsion requires higher pressures for a given λa. Note that,
unlike the situation with a constant permittivity for ψ∗ = 0 [1],
the pressure does not tend to the elastic value, independently of
q∗, with increasing values of λa.

In the right-hand column, on use of the connection (59) to

switch from q∗ to e∗, the corresponding dependence of P∗ on
the potential difference via e∗ is shown. As for q∗, with P∗ = 0,
increasing values of e∗ induce increases in λa, but slightly less
so than for q∗. Again, as for the left-hand column, increasing
values of ψ∗ require larger inflation pressures. However, with
increasing λa the pressure converges to the purely elastic value
independently of e∗, in contrast to the case of constant permit-
tivity for ψ∗ = 0 [1]. It is of interest to observe that in each
panel of Fig. 1 the curves all intersect at the same point (which
is different for each panel). The appropriate value of λa is given
by a solution of Pe = 0 independently of q∗ (or e∗) since Pm is
the same for each such q∗ (or e∗). This means that such a λa is
given by s = 0, where s is defined in (57).

The case of constant permittivity is recovered by taking α =

0. The curve for q∗ = 0 (or e∗ = 0) in Fig. 1 is the same
as that obtained for α = 0, while for non-zero q∗ (or e∗) the
corresponding curves are similar to this one. For each different
value of q∗ (or e∗) they start with a different value of λa > 1 for
P∗ = 0, then increase monotonically, but remain below it and
asymptote to it as λa increases.

Note that for the e∗ , 0 plots in Fig. 1 a maximum is in-
duced in the pressure. This is associated with an instability, as
discussed in some detail in [1] and references therein. A sim-
ilar comment applies to the plots of the torsional moment in
Fig. 2, although in this case the maximum is phased out as ψ∗

increases. The results for the Gent model shown later in Figs. 4
and 5, have similar interpretation, except that, by contrast with
the neo-Hookean based model, the upturn is associated with the
possibility of a snap-through instability.

In Fig. 2 the dependence of the dimensionless torsional mo-
ment M∗ on the dimensionless torsional strain ψ∗ is illustrated,
again with η = B/A = 1.3 and λz = 1.2. Reading from top to
bottom, the three rows correspond to fixed values of λa, specif-
ically 1, 1.5, 2.5, respectively. In each panel of the left-hand
column the plots are for q∗ = 0, 5, 10, 20, and in the right-
hand column for e∗ = 0, 5, 10, 20, in each case depicted by the
continuous, dashed, dotted and dashed-dotted curves, respec-
tively. It is clear from (51) and (52) that for fixed q∗ and λa

with M = Mm + Me the torsional response is linear and be-
comes stiffer as q∗ increases. On the other hand, for fixed e∗,
the right-hand column shows that the response is highly non-
linear and approaches the purely elastic result as ψ∗ increases.
If the permittivity is constant (α = 0) then M = Mm and the
relevant plots are the continuous straight lines in Fig. 2.

The four panels in the left-hand column of Fig. 3 show the
dependence of the dimensionless axial force F∗ on λa, again
with η = B/A = 1.3 and λz = 1.2, based on F = Fm + Fe, with
(53) and (54). The panels in Fig. 3 are arranged as for Fig. 1
with the same values of the parameters q∗, e∗ and ψ∗. Positive
(negative) values of F∗ correspond to tension (compression),
which would be needed to maintain the tube length and pre-
vent it shortening (lengthening). The plots for q∗ = 0, 5, 10, 20
(left-hand column) and for e∗ = 0, 5, 10, 20 (right-hand column)
correspond to the continuous, dashed, dotted and dashed-dotted
curves, respectively, in each case.

In the absence of an electric field, with ψ∗ = 0 and P∗ = 0, a
slightly positive value of F∗ supports the axial stretch λz = 1.2,
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Figure 5: A neo-Hookean dielectric with deformation dependent permittivity, α = 1/4, β =
1/2. Variations of the dimensionless form M∗ as a function of ψ∗ for q∗ = 0, 5, 10, 20 (left
column) and e∗ = 0, 5, 10, 20 (right column), depicted by solid, dashed, dotted and dashed-
dotted lines, respectively. The panels correspond to λa = 1, 1.5, 2.5, top to bottom, with
constant values λz = 1.2, η = 1.3.
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Figure 2: Plots of the dimensionless moment M∗ as a function of the dimensionless torsion
ψ∗ for a neo-Hookean dielectric with deformation dependent permittivity. Curves for
q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column) are depicted
by continuous, dashed, dotted and dashed-dotted curves, respectively, in each panel. The
first, second and third rows correspond to λa = 1, 1.5, 2.5, respectively.

are arranged as for Fig. 1 with the same values of the parameters q∗, e∗ and
ψ∗. Positive (negative) values of F ∗ correspond to tension (compression),
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Figure 2: Plots of the dimensionless moment M∗ as a function of the dimension-
less torsion ψ∗ for a neo-Hookean dielectric with deformation dependent per-
mittivity. Curves for q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20
(right-hand column) are depicted by continuous, dashed, dotted and dashed-
dotted curves, respectively, in each panel. Panels (a) and (b) are for the case
with λa = 1; panels (c) and (d) correspond to λa = 1.5; for panels (e) and (f),
λa = 2.5.

but, with increasing values of λa, F∗ becomes negative and de-
creases monotonically. This transition from positive to nega-
tive F∗ is advanced as ψ∗ increases from 0, and more so when
a charge or potential is applied, and then F∗ becomes negative
for all relevant values of λa. The results in the left-hand column
are qualitatively similar to those in the purely elastic case and
for the case with ψ∗ = 0 and constant permittivity [1] except
that F∗ here (for different q∗s) does not converge to the purely
elastic solution as λa increases.

The results in the right-hand column have some different fea-
tures. In particular, F∗ is not a monotonic function of λa for
every combination of e∗ and ψ∗ values and, for each value of e∗,
F∗ tends to the purely elastic solution with increasing λa, both
these being in contrast to the results for ψ∗ = 0 with constant
permittivity.

It is clear from Figs. 1–3 that deformation dependent permit-
tivity (through the parameter α) has a significant effect on the
material response, even on the basis of the simple neo-Hookean
elastic model. This model, it should be emphasized, provides
an accurate reflection of the behaviour of rubberize elasticity
only for moderate deformations, as is well known, and this is
evidenced by the fact that the pressure tends to a finite value as
λa increases indefinitely. The model does not account for the
material stiffening observed experimentally at large deforma-
tions. A more realistic model that accounts for such a stiffening
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Figure 4: A neo-Hookean dielectric with deformation dependent permittivity, α = 1/4, β =
1/2. Variations of the dimensionless axial force F ∗ as a function of the stretch λa for q∗ =
0, 5, 10, 20 (left column) and e∗ = 0, 5, 10, 20 (right column), depicted by solid, dashed,
dotted and dashed-dotted lines, respectively. The panels correspond to ψ∗ = 0, 0.5, 1, top
to bottom. The thickness ratio η = 1.3.
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Figure 3: Plots of the dimensionless reduced axial force F ∗ as a function of the stretch
λa for a neo-Hookean dielectric with deformation dependent permittivity. Curves for
q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column) are depicted
by continuous, dashed, dotted and dashed-dotted curves, respectively, in each panel. The
first, second and third rows correspond to ψ∗ = 0, 0.5, 1, respectively.

which would be needed to maintain the tube length and prevent it shortening
(lengthening). The plots for q∗ = 0, 5, 10, 20 (left-hand column) and for
e∗ = 0, 5, 10, 20 (right-hand column) correspond to the continuous, dashed,
dotted and dashed-dotted curves, respectively, in each case.

In the absence of an electric field, with ψ∗ = 0 and P ∗ = 0, a slightly
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Figure 3: Plots of the dimensionless reduced axial force F∗ as a function of
the stretch λa for a neo-Hookean dielectric with deformation dependent per-
mittivity. Curves for q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20
(right-hand column) are depicted by continuous, dashed, dotted and dashed-
dotted curves, respectively, in each panel. Panels (a) and (b) are for the case
with no torsion (ψ∗ = 0); panels (c) and (d) correspond to ψ∗ = 0.5; for panels
(e) and (f), ψ∗ = 1.

in the large deformation regime is that of Gent [8]. The follow-
ing section therefore uses this model for the elastic part ωm of
the energy function ω∗, together with the electric part ωe used
in Section 4.

5. Application to the Gent model

For the Gent model [8] ωm is given by

ωm = −
µG
2

log
1 − λ2

θ + λ2
z (1 + γ2) + λ−2

θ λ
−2
z − 3

G

 , (62)

where µ is again the shear modulus in the undeformed config-
uration and G is a dimensionless material constant. The elastic
contributions to P, M and F in (49), (51) and (53) are now eval-
uated numerically using Mathematica [20], while the electric
contributions are again given explicitly by (50), (52) and (54).
In the following illustrations G is taken to have the represen-
tative value 45, again with η = 1.3, λz = 1.2 and dielectric
parameters α = 0.25 and β = 0.5.

In Fig. 4 the dimensionless pressure P∗ is plotted as a func-
tion of λa for ψ∗ = 0, 0.5, 1, corresponding to the three rows of
panels, as for the neo-Hookean model. Comparing the results
in Fig. 4 with those Fig. 1 we observe that the initial parts of
the responses for moderate values of λa are very similar for all
values of q∗ and e∗, and the discussion in Section 4 therefore
still applies and is not be repeated here. The main difference
between the predictions of the neo-Hookean and Gent models
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Figure 2: A Gent dielectric with deformation dependent permittivity, α = 1/4, β = 1/2.
Variations of the dimensionless pressure P ∗ as a function of the stretch λa for q∗ =
0, 5, 10, 20 (left column) and e∗ = 0, 5, 10, 20 (right column), depicted by solid, dashed,
dotted and dashed-dotted lines, respectively. The panels correspond to ψ∗ = 0, 0.5, 1, top
to bottom. The thickness ratio η = 1.3.
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Figure 4: Plots of the dimensionless pressure P ∗ as a function of the stretch λa for a Gent
dielectric with deformation dependent permittivity. Plots for q∗ = 0, 5, 10, 20 (left-hand
column) and e∗ = 0, 5, 10, 20 (right-hand column) are depicted by continuous, dashed,
dotted and dashed-dotted curves, respectively, in each panel. The first, second and third
rows correspond to ψ∗ = 0, 0.5, 1, respectively.

20

Figure 4: Plots of the dimensionless pressure P∗ as a function of the stretch λa
for a Gent dielectric with deformation dependent permittivity. Plots for q∗ =

0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column) are
depicted by continuous, dashed, dotted and dashed-dotted curves, respectively,
in each panel. Panels (a) and (b) are for the case with no torsion (ψ∗ = 0);
panels (c) and (d) correspond to ψ∗ = 0.5; for panels (e) and (f), ψ∗ = 1.

is that for the latter the response stiffens significantly for large
deformations as λa approaches its asymptotic value defined by
I1 = 3 + G in (62).

Figure 5 shows the torsional behaviour of the Gent model
with M∗ plotted against ψ∗. In this case the three rows corre-
spond to fixed values of λa, namely 1, 1.5, 2.5. In each panel of
the left-hand column the curves are for q∗ = 0, 5, 10, 20 and in
the right-hand column for e∗ = 0, 5, 10, 20, in each case corre-
sponding to the continuous, dashed, dotted and dashed-dotted
curves, respectively. The main differences compared with the
neo-Hookean plots are the stiffening at larger values of ψ∗ and
the nonlinearity in some of the q∗ plots for the Gent model com-
pared with the linear neo-Hookean results.

Qualitatively, the results for F∗ against λa shown in Fig. 6
are similar to those for the neo-Hookean model, but again the
response stiffens more rapidly as λa increases than for the neo-
Hookean model.
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Figure 5: A Gent dielectric with deformation dependent permittivity, α = 1/4, β = 1/2.
Variations of the dimensionless form M∗ as a function of the ψ∗ for q∗ = 0, 5, 10, 20
(left column) and e∗ = 0, 5, 10, 20 (right column), depicted by solid, dashed, dotted and
dashed-dotted lines, respectively. The panels correspond to λz = 1.2, λa = 1, 1.5, 2.5, top
to bottom. The thickness ratio η = 1.3.
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Figure 5: Plots of the dimensionless moment M∗ as a function of the dimensionless tor-
sional strain ψ∗ for a Gent dielectric with deformation dependent permittivity. Curves for
q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column) are depicted
by continuous, dashed, dotted and dashed-dotted curves, respectively, in each panel. The
first, second and third rows correspond to λa = 1, 1.5, 2.5, respectively.
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Figure 5: Plots of the dimensionless moment M∗ as a function of the dimension-
less torsional strain ψ∗ for a Gent dielectric with deformation dependent per-
mittivity. Curves for q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20
(right-hand column) are depicted by continuous, dashed, dotted and dashed-
dotted curves, respectively, in each panel. Panels (a) and (b) are for the case
with λa = 1; panels (c) and (d) correspond to λa = 1.5; for panels (e) and (f),
λa = 2.5.
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Figure 4: A Gent dielectric with deformation dependent permittivity, α = 1/4, β = 1/2.
Variations of the dimensionless axial force F ∗ as a function of the stretch λa for q∗ =
0, 5, 10, 20 (left column) and e∗ = 0, 5, 10, 20 (right column), depicted by solid, dashed,
dotted and dashed-dotted lines, respectively. The panels correspond to ψ∗ = 0, 0.5, 1, top
to bottom. The thickness ratio η = 1.3.
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Figure 6: Plots of the dimensionless reduced axial force F ∗ as a function of the stretch λa
for a Gent dielectric with deformation dependent permittivity. Curves for q∗ = 0, 5, 10, 20
(left-hand column) and e∗ = 0, 5, 10, 20 (right-hand column) are depicted by continuous,
dashed, dotted and dashed-dotted curves, respectively, in each panel. The first, second
and third rows correspond to ψ∗ = 0, 0.5, 1, respectively.
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Figure 6: Plots of the dimensionless reduced axial force F∗ as a function of
the stretch λa for a Gent dielectric with deformation dependent permittivity.
Curves for q∗ = 0, 5, 10, 20 (left-hand column) and e∗ = 0, 5, 10, 20 (right-hand
column) are depicted by continuous, dashed, dotted and dashed-dotted curves,
respectively, in each panel. Panels (a) and (b) are for the case with no torsion
(ψ∗ = 0); panels (c) and (d) correspond to ψ∗ = 0.5; for panels (e) and (f),
ψ∗ = 1.
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6. Concluding remarks

In the foregoing sections the influence of the deformation de-
pendence of the dielectric permittivity of an electroelastic tube
subject to finite deformations consisting of axial extension, ra-
dial inflation and torsion has been highlighted, and it is clear
that this dependence and the torsion have a significant effect
compared with corresponding results for constant permittivity
given in [1] in the absence of torsion. That the permittivity does
indeed depend on deformation has been demonstrated in several
papers, including [2] and [3]. The model of the deformation de-
pendence adopted herein reflects the properties found in these
papers for particular materials. However, information concern-
ing the deformation dependent properties are rather limited and
to inform a definitive model for these properties many more
data are needed.
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