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Finite deformations of an electroelastic circular cylindrical tube
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Abstract. In this paper the theory of nonlinear electroelasticity is used to examine deformations of a pressurized thick-walled
circular cylindrical tube of soft dielectric material with closed ends and compliant electrodes on its curved boundaries. Ex-
pressions for the dependence of the pressure and reduced axial load on the deformation and a potential difference between,
or uniform surface charge distributions on, the electrodes are obtained in respect of a general isotropic electroelastic energy
function. To illustrate the behaviour of the tube, specific forms of energy functions accounting for different mechanical prop-
erties coupled with a deformation independent quadratic dependence on the electric field are used for numerical purposes,
for a given potential difference and separately for a given charge distribution. Numerical dependences of the non-dimensional
pressure and reduced axial load on the deformation are obtained for the considered energy functions. Results are then given
for the thin-walled approximation as a limiting case of a thick-walled cylindrical tube without restriction on the energy
function. The theory described herein provides a general basis for the detailed analysis of the electroelastic response of
tubular dielectric elastomer actuators, which is illustrated for a fixed axial load in the absence of internal pressure and fixed
internal pressure in the absence of an applied axial load.
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1. Introduction

Recent successes in the technological production of new dielectric elastomeric materials has instigated
a rapid development of devices which employ the properties of such materials, including, for example,
actuators and sensors, as well as noise cancelling and energy conversion devices and prototype artificial
muscles. The associated nonlinear electromechanical interaction requires, in general, a rigorous continuum
electromechanical theory, the development of which can be traced to the middle of the last century in
the seminal work of Toupin [1], who was concerned with the theory governing elastic dielectric materials.
Books dealing with the theory include [2–5]. The approach to the theory in the form described by
Dorfmann and Ogden [6], however, has led to further developments and has proved to be amenable to
the solution of boundary-value problems, as exemplified in [7] and the recent monograph by Dorfmann
and Ogden [8] and references therein.

Included in the latter works was the analysis of the deformation of a circular cylindrical tube subject
to a radial electric field with the field permeating both the interior and exterior spaces. As far as the
application of the tube geometry to actuator technology is concerned a more realistic setup involves a tube
with compliant electrodes coated on its curved boundaries, and this is the arrangement that is considered
in the present paper. Indeed, this was one of the possible actuator geometries mentioned in [9,10] in
which prototype actuators were considered as proof of concept for actuating dielectric elastomers by an
electric field. The corresponding problem for a spherical shell subject to internal pressure and compliant
electrodes on its inner and outer surfaces was analysed in [11].
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The boundary-value problem for a tube with closed ends considered in this paper includes both an
internal pressure, which contributes to the axial load on the ends of the tube, and compliant electrodes
on its inner and outer major surfaces. The actuating (axial) force can be generated by inflation and/or an
electric field, and is more versatile than if the actuation is purely from an electric field since it can take
advantage of both actuation mechanisms. For example, actuation by inflation can be used for the delicate
handling of fragile objects where a soft touch is needed [12], while actuation by an electric field can be
advantageous for some applications where rapid and accurate deformation is required [13]. The collection
of papers in the volume by Carpi et al. [14] provides a source of information about the technology of
dielectric actuators and their applications.

An early contribution to tubular actuator considerations was that by Carpi and De Rossi [15] who
obtained experimental results for a silicone elastomer. Their mechanical analysis, however, was based
on the linear theory of elasticity. In the nonlinear elasticity context a mathematical model for a thin-
walled cylindrical fibre-reinforced pneumatic actuator was introduced in [13] in which a purely elastic
incompressible strain-energy function was adopted, the effect of electric field being incorporated through
the Maxwell stress. The fibres were taken to be inextensible and symmetrically and helically wound
and the mode of actuation consisted of an inflation pressure followed by an applied voltage (poten-
tial difference), leading to radial expansion and, because of the fibre inextensibility, to axial shorten-
ing. The actuation response of a thick-walled tube of incompressible isotropic elastic material without
internal pressure was examined in Zhu et al. [16] based on the so-called ideal dielectric elastomer, a
description introduced in [17], for two different forms of the elastic part of the constitutive law. In
this setting the actuation induced axial lengthening of the tube. Zhu et al. [16] also examined the
electromechanical stability of the tube by considering the relationship between the applied voltage and
the resulting (axial) actuation strain. To the authors’ knowledge the two papers [13] and [16] consti-
tute the main literature concerned with analysing tubular dielectric actuators in the nonlinear con-
text.

The aim of the present paper is to analyse the response of a tubular actuator to the combination of a
radial electric field, an internal pressure and an axial load for the fully nonlinear theory of electroelasticity
developed in [6], first by considering a thick-walled tube and then its thin-walled specialization.

In Sect. 2 the main equations of the theory of incompressible isotropic electroelasticity are summarized,
while in Sect. 3 the equations are specialized to those required for the considered circular cylindrical
geometry. General expressions are obtained for the internal pressure in a tube with closed ends and the
axial load on its ends. Next, by considering a simple specific form of energy function, explicit expressions
for the pressure and axial load are obtained in terms of the deformation and the electrostatic potential
(or charge) applied to the compliant electrodes.

From the formulas for a thick-walled tube numerical results which illustrate the dependence of the
pressure and (reduced) axial load on the tube radius (via the azimuthal stretch on its inner boundary)
and length (via the axial stretch) for different values of the applied potential or charge are provided in
Sect. 4 for three different forms of the elastic part of the energy function for two different wall thicknesses
(one relatively thin and one thicker) and compared with the results for the purely elastic case. It was
found that there is very little difference qualitatively between the results for different tube thicknesses.
Thus, it is appropriate to specialize to the thin-walled tube approximation, and this is done in Sect. 5,
wherein explicit expressions for the pressure and (reduced) axial load are obtained in respect of a general
electroelastic constitutive law.

A short discussion of activation is contained in Sect. 6 based on the thin-walled formulas from Sect. 5
by considering either zero internal pressure and activation at fixed axial load or zero reduced axial load
at fixed internal pressure. Specific results are illustrated in respect of the neo-Hookean elastic model.
Finally, some short concluding remarks are provided in Sect. 7.
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2. Basic equations

2.1. Kinematics

Consider an unloaded electrosensitive material continuum in the absence of an electric field. This con-
figuration is referred to as the reference configuration, which is denoted by Br. Material points in Br are
labelled by the position vector X. When subject to loads and/or an electric field the continuum deforms,
the deformed configuration being denoted B, wherein the material point X has become x and the defor-
mation from Br to B is identified in terms of the vector deformation function χ so that x = χ(X) for
each X in Br (here we are not considering time dependence). The boundaries of Br and B are denoted by
∂Br and ∂B, respectively.

Locally the deformation is described in terms of the deformation gradient tensor, denoted F, which is
defined by

F = Gradχ, (1)

where Grad is the gradient operator defined with respect to X. The associated right and left Cauchy–
Green deformation tensors, denoted c and b respectively, are defined by

c = FTF, b = FFT, (2)

and the quantity defined by J = detF measures local volume changes, so that J = 1 for an isochoric
deformation, while for an incompressible material J = 1 identically at each X in Br.

2.2. Equations governing an electrostatic field: Eulerian forms

Let E and D denote the electric field and electric displacement vectors, respectively, in B. Then, for the
purely static situation in the absence of magnetic fields, free currents and free volumetric electric charges
the required specializations of Maxwell’s equations governing E and D are

curlE = 0, divD = 0, (3)

where the operators curl and div are defined with respect to x.
Let E� and D� denote the corresponding fields outside the material. In the case of free space, for

example, they are related by D� = ε0E�, where ε0 is the permittivity of free space, and they satisfy the
same equations as E and D.

The field vectors have to satisfy the standard boundary conditions

n × (E� − E) = 0, n · (D� − D) = σf on ∂B, (4)

where n is the unit outward normal to ∂B and σf is the free surface charge on ∂B per unit area.

2.3. Equations governing an electrostatic field: Lagrangian forms

In order to develop a compact form of the constitutive law for an electroelastic material it was found
advantageous in [6] to work in terms of Lagrangian forms of the electric field vectors. These are the pull
back versions of E and D from B to Br, denoted by EL and DL and defined by

EL = FTE, DL = JF−1D, (5)

where we recall that J = detF. The counterparts of the equations in (3) are

CurlEL = 0, DivDL = 0, (6)

where the operators Curl and Div are defined with respect to X.
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By defining N as the unit outward normal to ∂Br and making use of Nanson’s formula nda =
JF−TNdA connecting area elements da on ∂B and dA on ∂Br together with the connections (5) the
boundary conditions (4) can be converted to Lagrangian form (see, for example, [8], section 4.4) as

(FTE∗ − EL) × N = 0, (JF−1D∗ − DL) · N = σF on ∂Br, (7)

where σF is free surface charge density per unit area of ∂Br, and it is noted that the value of F on ∂Br

calculated from within Br is included since it is not defined outside the material.

2.4. Constitutive equations

In [6] two alternative forms of electroelastic constitutive law were introduced based on the notion of a total
energy density as a function of F and either EL or DL as the independent electric variable. These were
denoted Ω(F,EL) and Ω∗(F,DL), and either can be used in the development of the theory in general.
Here we adopt just one of the formulations, that based on Ω∗(F,DL). This enables the total nominal
stress tensor T and the Lagrangian electric field EL for an incompressible material to be given in compact
forms by the formulas

T =
∂Ω∗

∂F
− pF−1, EL =

∂Ω∗

∂DL
, (8)

with, by objectivity, Ω∗ depending on F through c, p being a Lagrange multiplier associated with the
incompressibility constraint

detF = 1. (9)

Similarly to the nonlinear theory of elasticity the (total) Cauchy stress tensor, here denoted τ , is a
(partial) push forward of a total nominal stress: τ = FT. The corresponding push forward of EL is, from
(5), E = F−TEL. Thus, in terms of Ω∗,

τ = F
∂Ω∗

∂F
− pI, E = F−T ∂Ω∗

∂DL
, (10)

where I is the identity tensor in B.
For an incompressible isotropic electroelastic material, on which we focus in this paper, Ω∗ is an

isotropic function of c and DL ⊗ DL and hence may be expressed as a function of five independent
invariants. The standard invariants

I1 = trc, I2 =
1
2
[(trc)2 − tr(c2)], (11)

I4 = DL · DL, I5 = DL · (cDL), I6 = DL · (c2DL), (12)

are adopted here, and we note that, by incompressibility, the invariant I3 = detc = J2 = 1 is omitted.
When expanded in terms of the invariants the formulas (10) become

τ = 2Ω∗
1b + 2Ω∗

2(I1b − b2) − pI + 2Ω∗
5D ⊗ D + 2Ω∗

6(D ⊗ bD + bD ⊗ D), (13)
E = 2(Ω∗

4b
−1 + Ω∗

5I + Ω∗
6b)D, (14)

where Ω∗
i is defined as ∂Ω∗/∂Ii for i = 1, 2, 4, 5, 6, and we recall that b is defined by (2)2.

In the absence of mechanical body forces the electromechanical equilibrium equation has the simple
form

divτ = 0 (15)

since electric body forces can be written as the divergence of a second-order tensor and are incorporated
through τ , which, by virtue of angular momentum balance, is symmetric.
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Considering the deformed configuration B, the boundary condition for the total Cauchy stress is
expressible as

τn = ta + t�
m on ∂Bt, (16)

where ∂Bt is the part of the boundary where the mechanical traction ta is prescribed and t�
m = τ �

mn is
the load due to the Maxwell stress τ �

m, which is calculated from the fields outside B and defined by

τ �
m = ε0E� ⊗ E� − 1

2
ε0(E� · E�)I. (17)

3. Application to a thick-walled tube

3.1. Extension and inflation of a tube

The theory of the previous section is now specialized for application to the problem of extension and
inflation of a thick-walled circular cylindrical tube. The tube has closed ends and is subject to internal
pressure, an axial load and a radial electric field generated by a potential difference between flexible
electrodes coated on its inner and outer radial surfaces.

The reference geometry of the tube is described in terms of cylindrical polar coordinates R, Θ, Z
according to

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (18)

where A and B are the internal and external radii and L is the length of the tube.
The circular symmetry is assumed to be maintained under extension and inflation so that the deformed

configuration is described in terms of cylindrical polar coordinates r, θ, z. Thus,

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (19)

where a, b and l are the radii and the length of the tube in the deformed configuration.
Since the material is incompressible the resulting deformation is described by the equations

r = f(R) ≡
√

a2 + λ−1
z (R2 − A2), θ = Θ, z = λzZ, (20)

where λz is the uniform axial stretch. For this special form of deformation the deformation gradient F
is purely diagonal with respect to the cylindrical polar axes, which are also the principal axes of the
deformation. It is convenient to introduce the notation λ = r/R for the azimuthal stretch. Then, by the
incompressibility condition (9), the stretch in the radial direction is λr = λ−1λ−1

z .
The connections

λ2
aλz − 1 =

R2

A2
(λ2λz − 1) =

B2

A2
(λ2

bλz − 1), (21)

follow from Eq. (20)1, the notations λa and λb being defined by

λa =
a

A
, λb =

b

B
, b = f(B). (22)

It follows from (21) that the sign of λ2λz − 1 is independent of the radius r. When this sign is positive,
as would be the case for inflation of the tube at fixed length for example, λa ≥ λ ≥ λb.

Since, with respect to the chosen cylindrical polar coordinates, the matrix of the deformation gradient
has the diagonal form diag [λr, λ, λz], the invariants I1 and I2 can be expressed as

I1 = λ−2λ−2
z + λ2 + λ2

z, I2 = λ2λ2
z + λ−2 + λ−2

z . (23)
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3.2. Electric field components and boundary conditions

A potential difference applied to the flexible electrodes on the surfaces r = a and r = b is associated
with equal charges of opposite signs on the two surfaces and generates a radial electric field within the
material. By Gauss’s Theorem there is then no radial field outside the tube. This statement is exact for
an infinitely long tube, but for a tube of finite length edge effects may modify this. It is assumed here
that the tube is long enough or thin enough so that edge effects can be neglected and the electric field can
be considered as having only a radial component Er, with Dr the corresponding electric displacement
component, each being independent of θ and z. Then Eq. (3)1 is satisfied identically and (3)2 yields

d
dr

(rD) = 0, (24)

where Dr has been written D = D(r). Thus, rD is a constant, and hence

rD(r) = aD(a) = bD(b). (25)

The total charge on r = a is now denoted by Q (which may be positive or negative), and that on r = b
is therefore −Q. The free surface charge densities per unit area on r = a and r = b are

σfa =
Q

2πal
, σfb = − Q

2πbl
. (26)

From the boundary condition (4)2 with D� = 0 we obtain for the two boundaries

D(a) = σfa, D(b) = −σfb, (27)

and hence (25) yields

rD(r) =
Q

2πl
. (28)

In Sect. 2.4 we chose the work in terms of the energy function Ω∗(F,DL), where DL = F−1D, which is
appropriate for the tube problem since the electric displacement has been determined explicitly, whereas
the corresponding electric field has not. For the present problem DL has just a radial component, denoted
DL and given by DL = λ−1

r D = λλzD. From the definitions (12), the invariants I4, I5 and I6 can then
be expressed as

I4 = D2
L, I5 = λ−2λ−2

z I4, I6 = λ−4λ−4
z I4. (29)

The electric field E is given in Eq. (14) but has only a radial component Er, now denoted E and given
by

E = 2(Ω∗
4λ

2λ2
z + Ω∗

5 + Ω∗
6λ

−2λ−2
z )D. (30)

3.3. Stress components and boundary conditions

The Cauchy stress components are obtained from (13), the only nonzero ones being

τrr = 2Ω∗
1λ

−2λ−2
z + 2Ω∗

2(λ
−2
z + λ−2) − p + 2Ω∗

5D
2 + 4Ω∗

6λ
−2λ−2

z D2, (31)
τθθ = 2Ω∗

1λ
2 + 2Ω∗

2

[
λ−2

z + λ2
zλ

2
] − p, (32)

τzz = 2Ω∗
1λ

2
z + 2Ω∗

2

[
λ−2 + λ2λ2

z

] − p. (33)

Since the invariants are functions of two independent stretches λ and λz and I4 it is convenient to define
the reduced energy function ω∗ by

ω∗(λ, λz, I4) = Ω∗(I1, I2, I4, I5, I6), (34)

with I1, I2, I5, I6 specialized according to Eqs. (23) and (29).



ZAMP Finite deformations of an electroelastic circular cylindrical tube Page 7 of 20  140 

From Eqs. (31)–(33) we then obtain the simple formulas

τθθ − τrr = λω∗
λ, τzz − τrr = λzω

∗
λz

, (35)

where ω∗
λ = ∂ω∗/∂λ and ω∗

λz
= ∂ω∗/∂λz. Similarly, from Eq. (30) we obtain

E = 2λ2λ2
zω

∗
4D, (36)

where ω∗
4 = ∂ω∗/∂I4.

Since there is no field outside the tube, the Maxwell stress (17) is zero, and the only mechanical
contribution to the boundary condition (16) is an applied pressure P on the inner surface at r = a (with
zero traction on r = b). Thus,

τrr = −P on r = a, τrr = 0 on r = b. (37)

The equilibrium equation (15) specializes to

r
dτrr

dr
= τθθ − τrr = λω∗

λ, (38)

in which (35)1 has been used. Integration of (38) with the boundary conditions (37) yields

P =

b∫

a

λω∗
λ

dr

r
. (39)

Since b = f(B) =
√

a2 + λ−1
z (B2 − A2) this provides an expression for the pressure P in terms of the

inner radius a and the electric field through the invariant I4 for any given initial geometry and axial
stretch.

In addition to the internal pressure an axial load is applied to the ends of the tube, which is assumed
to have closed ends so that the axial load includes a contribution from the pressure on the ends of the
tube. This is denoted by N and given by

N = 2π

b∫

a

τzzrdr. (40)

On use of Eqs. (35) and (38) the axial stress τzz can be expressed as

τzz =
1
2

[
1
r

d
dr

(r2τrr) − λω∗
λ

]
+ λzω

∗
λz

, (41)

and hence, on integration of the first term and application of the boundary conditions (37), we obtain

F ≡ N − πa2P = π

b∫

a

(2λzω
∗
λz

− λω∗
λ)rdr, (42)

wherein the quantity F is defined. This is referred to as the reduced axial load because it removes the
contribution of the pressure load on the ends of the cylinder from the total axial load N .

3.3.1. A special material model. The theory of the previous section is completely general for an isotropic
electroelastic material and admits many possible specializations. For definiteness we now consider a
simple model for which the electric contribution to above formulas for P and F is based on the linear
specialization E = ε−1D of the constitutive law (30), corresponding to Ω∗

4 = Ω∗
6 = 0 and Ω∗

5 = 1/(2ε),
where ε is the permittivity of tube material, taken to be a constant, so that ω∗

4 = 1/(2ελ2λ2
z), and the

contribution of the electric field to ω∗ is εE2/2 = D2/(2ε). We then assume that ω∗ has the form

ω∗ = ω(λ, λz) +
1
2
ε−1λ−2λ−2

z I4, (43)
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where ω(λ, λz) is a purely (isotropic) elastic contribution to the total energy, as yet remaining completely
general. It follows that

λω∗
λ = λωλ − ε−1λ−2λ−2

z I4, λzω
∗
λz

= λzωλz
− ε−1λ−2λ−2

z I4. (44)

Integration of the electric term in (39) and (42) leads to

P =

λa∫

λb

(λ2λz − 1)−1ωλdλ − qA4(η2 − 1)
2ελ3

za
2b2

, (45)

and

F = πA2(λ2
aλz − 1)

λa∫

λb

(λ2λz − 1)−2(2λzωλz
− λωλ)λdλ − πqA2

ελ2
z

log
b

a
, (46)

where η = B/A and q, which is independent of the deformation, is defined as

q =
(

Q

2πAL

)2

, (47)

and the integration variable in the remaining integrals has been changed to λ using the connection

r
dλ

dr
= −λ(λ2λz − 1), (48)

which can be obtained from the definition λ = r/R and Eq. (20)1.

3.4. Charge or potential

Since curlE = 0, there exists a scalar field φ (the electrostatic potential) such that E = −gradφ. For the
present problem φ depends only on r, and therefore Er = E = −dφ/dr, and hence, from (36), we have

dφ

dr
= −2λ2λ2

zω
∗
4D. (49)

Integration of this using (28) gives the potential difference between the surfaces as

φ(b) − φ(a) = − Q

πl
λ2

z

b∫

a

λ2ω∗
4

dr

r
. (50)

For the model (43) this yields the explicit formula

φ(b) − φ(a) = − Q

2πlε
log(b/a), (51)

which provides a relationship between the potential difference between the inner and outer surfaces, the
charge Q, the inner radius a and the length of the cylinder l. Note that in terms of the reference coordinate
R the potential may be written as Φ(R) = φ(r), so that the potential difference can also be written as
Φ(B) − Φ(A).

We now introduce the notation E0, which is the mean value of the potential through the undeformed
thickness, i.e.,

E0 =
φ(b) − φ(a)

B − A
. (52)

This is a convenient measure of the potential difference, and is connected to the charge through q by

εE2
0 =

q[log(b/a)]2

λ2
z(η − 1)2ε

, (53)
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where, we recall, η = B/A. This allows the formulas (45) and (46) to be expressed in terms of the potential
difference as

P =

λa∫

λb

(λ2λz − 1)−1ωλdλ − εE2
0(η2 − 1)(η − 1)2

2λzλ2
aλ2

bη
2[log(b/a)]2

(54)

and

F = πA2(λ2
aλz − 1)

λa∫

λb

(λ2λz − 1)−2(2λzωλz
− λωλ)λdλ − πA2 εE2

0(η − 1)2

log(b/a)
. (55)

To be more specific we now consider a simple energy function for which the purely elastic part corre-
sponds to the neo-Hookean model, so that

Ω∗(I1, I5) =
1
2
μ(I1 − 3) +

1
2
ε−1I5, (56)

where the constant μ is the shear modulus of the neo-Hookean material in the absence of an electric field.
It follows that

ω∗ = ω +
1
2
ε−1λ−2λ−2

z I4, ω =
1
2
μ(λ2 + λ2

z + λ−2λ−2
z − 3), (57)

and hence

λωλ = μ(λ2 − λ−2λ−2
z ), λzωλz

= μ(λ2
z − λ−2λ−2

z ), (58)

and the integrals in (45) and (46) can be evaluated explicitly to give

P = μ

[
λ−1

z ln (λa/λb) + λ−2
z

λ2
a − λ2

b

2λ2
bλ

2
a

]
− qA4(η2 − 1)

2ελ3
za

2b2
(59)

and

F = πA2μ
[
(λz − λ−2

z )(η2 − 1) − λ−2
z (λ2

aλz − 1) log(λa/λb)
] − πqA2

ελ2
z

log(b/a). (60)

The formulas (59) and (60) give expressions for P and F in terms of λa and λz and, via q, the charge,
and again we recall that λb can be expressed in terms of λa and λz.

The formula (59) for P may also be written in terms of the potential difference as

P = μ

[
λ−1

z ln
λa

λb
+ λ−2

z

λ2
a − λ2

b

2λ2
bλ

2
a

]
− εE2

0(η2 − 1)(η − 1)2

2λzλ2
aλ2

bη
2[log(b/a)]2

, (61)

and likewise

F = πA2[(λz − λ−2
z )(η2 − 1) − λ−2

z (λ2
aλz − 1) log(λa/λb)] − πA2 εE2

0(η − 1)2

log(b/a)
. (62)

Note that for P = 0 elimination of either q from (59) and (60) or E0 from (61) and (62) yields a
formula for F which is equivalent to one obtained in [16] but expressed in different notation.

4. Numerical results

In this section, in dimensionless form with P ∗ = P/μ and F ∗ = F/(πμA2), we illustrate the dependence
of P and F on λa based on Eqs. (45) and (46) for different fixed (dimensionless) values of q, defined by
q∗ = q/(με), and Eqs. (54) and (55) for different fixed (dimensionless) values of E2

0 , defined by e∗ = εE2
0/μ,
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with λz = 1.2 in each case and for three different forms of the elastic energy function ω(λ, λz). The same
shear modulus μ is used for each of the three models. These are, first, the neo-Hookean model

ω(λ, λz) =
1
2
μ(λ2 + λ2

z + λ−2λ−2
z − 3), (63)

and second, the Ogden model [18] for which

ω(λ, λz) =
3∑

n=1

μn

αn
(λαn + λαn

z + λ−αn
z λ−αn − 3), (64)

where μn and αn, n = 1, 2, 3, are material constants and the shear modulus μ is given by

2μ =
3∑

n=1

μnαn. (65)

Specifically, we use the following values of the material constants, with μ∗
n = μn/μ, which were obtained

by fitting data for a vulcanized natural rubber:

α1 = 1.3, α2 = 5.0, α3 = −2.0, μ∗
1 = 1.491, μ∗

2 = 0.0028, μ∗
3 = −0.0237. (66)

The third model is the limiting chain extensibility model of Gent [19] for which

ω(λ, λz) = −μG

2
log

[
1 − (λ2 + λ2

z + λ−2λ−2
z − 3)

G

]
, (67)

where G is a dimensionless material constant, which is set here to the value G = 97.2 obtained by Gent
in fitting data for vulcanized rubber.

Figures 1 and 2 are for η = B/A = 1.1, a relatively thin-walled tube, while Figs. 3 and 4 are for a
relatively thick-walled tube with η = 1.5. Mathematica [20] is used for the numerical calculations.

In Fig. 1 P ∗ is plotted against λa. In each panel of the left-hand column four different fixed values of
q∗ are used while for each panel in the right-hand column results are shown for four different fixed values
of e∗. The first, second and third rows, respectively, correspond to the neo-Hookean, Ogden and Gent
models.

These results (with η = 1.1) are, not surprisingly, consistent with the explicit expressions for P and
F for a thin-walled tube to be presented in Sect. 5. Indeed, calculations for thinner walled tubes (e.g.,
η = 1.01) reveal the same qualitative features as for η = 1.1. In particular, for fixed charge the influence
of the electric contribution declines with increasing azimuthal stretch λa whereas an increasing potential
difference has a progressively negative influence for all λa for each of the models.

It is well known from rubber elasticity that the range of deformations for which the neo-Hookean
model is applicable is limited. This is reflected in the plots in Fig. 1a, b where there is an upper limit
to the pressure that can be sustained with P tending to an asymptote as λa becomes larger and larger.
The upper curve corresponds to the purely elastic case. The asymptote is the same for all values of q∗

in Fig. 1a but reduces in Fig. 1b with increasing e∗. For any pressure (including P ∗ = 0) below the
asymptotic value the effect of an applied q∗ is to increase λa, i.e., to increase the radius. This effect is
the same, but somewhat less pronounced, for an applied e∗.

In the case of Fig. 1c, d there is no upper limit to the pressure and, for any given pressure, an increase
in q∗ or e∗ has the effect of increasing the radius. For this model, however, there is a maximum in the
pressure followed by a minimum and subsequent monotonic increase as λa increases. This phenomenon
is well known for rubber balloons, is associated with snap through instability and is maintained in the
presence of an electric field for a dielectric elastomer balloon (see [21] for the case of a spherical balloon).
In Fig. 1d the pressure required to achieve a given inflation reduces as the applied potential difference
increases, to the point that (illustrated for e∗ = 0.55) snap though instability can occur in the absence
of pressure.
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Fig. 1. Plots of the dimensionless pressure P ∗ versus λa with η = 1.1 and λz = 1.2 based on Eqs. (45) and (54) for the neo-
Hookean, Ogden and Gent models in the first, second and third rows, respectively, and for fixed charges with q∗ = q/με =
0, 1, 5, 10 in the left-hand column and fixed potential difference in the right-hand column with e∗ = εE2

0/μ = 0, 0.2, 0.35, 0.55

in (d) and e∗ = εE2
0/μ = 0, 0.2, 0.35, 0.5 in (b) and (f). In each panel the value of P ∗ decreases as the magnitude of the field

measure increases

For the Gent model the results shown in Fig. 1e, f follow a similar trend to those in Fig. 1c, d except
that the pressure increases monotonically with λa up to a limiting value of λa beyond the values shown
in Fig. 1e, f for which P ∗ → ∞, which is associated with so-called limiting chain extensibility.

In general, as can be seen from all the plots in Fig. 1, when an electric field is operative between the
electrodes a lower pressure is required to obtain a prescribed circumferential stretch compared with that
required in the purely elastic case.
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Fig. 2. Plots of non-dimensional reduced axial load F ∗ versus λa with η = 1.1 and λz = 1.2 based on Eqs. (46) and (55)
for the neo-Hookean, Ogden and Gent models in the first, second and third rows, respectively, and for fixed charges with
q∗ = 0, 1, 5, 10 in the left-hand column and fixed potential difference with e∗ = 0, 0.2, 0.35, 0.5 in the right-hand column. In
each panel the value of F ∗ decreases as the magnitude of the field measure increases

The plots in Fig. 1 are for λz = 1.2. The plots are qualitatively similar for other values of λz > 1
provided they are not unrealistically large. Values less than 1 can be associated with buckling instabilities
in the absence of pressure or an electric field and are not considered here.

In Fig. 2, again with η = 1.1 and λz = 1.2, the effect of inflation on the reduced axial load is illustrated
for the same material models as in Fig. 1 with the same layout of the six panels. The same trend can be
observed for each of the material models in Fig. 2a–f, so we focus on the description of this trend without
reference to a specific panel. The uppermost curve corresponds to the purely elastic case, which starts
where λa = λ

−1/2
z for λz = 1.2. This requires a positive value of the reduced axial load. As inflation

proceeds this positive value is maintained initially but then, after a certain value of λa, the axial load
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becomes negative, indicating that in its absence the tube would increase its length. An applied electric
field causes an increase in λa at zero pressure so that the corresponding curves for different values of q∗

or e∗ begin at the appropriate higher value of λa and generally the value of F ∗ decreases as the pressure
increases. Thus, in general, an applied electric field counteracts the effect of the initial positive reduced
axial load and tends to increase the length of the tube, thus requiring a negative reduced axial load to
maintain the stretch λz = 1.2 when the electric field strength becomes large enough. Fig. 2c is slightly
different from the other panels in that, as q∗ increases, F ∗ exhibits a maximum as the pressure increases,
but then decreases monotonically, as in the other panels.

In Figs. 3 and 4 the counterparts of the results shown in Figs. 1 and 2 are illustrated for a tube with a
thicker wall with η = 1.5 and with the same values of q∗ and e∗, except that in Fig. 3d the value e∗ = 0.5
is used instead of e∗ = 0.55 in Fig. 1d so as to avoid the curve intersecting the P ∗ = 0 axis. Qualitatively
the plots are identical to those in Figs. 1 and 2, the main difference quantitatively being that the values
of P ∗ and F ∗ in Figs. 3 and 4 are significantly larger than those in Figs. 1 and 2 for each λa (by a
factor of between about 4 and 6). Note that because of the neglect of end conditions and the assumed
maintenance of the circular cylindrical shape the length of the tube does not feature in the calculations
(except indirectly through q). For a thick-walled tube it can be expected, however, that shear tractions
will be required on the cylinder ends in order to maintain the geometry. These are not considered here
because our main interest is in relatively thin-walled tubes.

Our calculations show that the qualitative nature of the results remains the same as the wall thickness
increases, except that the maximum/minimum for the Ogden model is removed for sufficiently large values
of η, which are not our concern here. This suggests that the main features of interest can be captured
by considering a thin-walled tube, and the thin-walled tube approximation is therefore examined in the
following section.

5. The thin-walled tube approximation

For a thin-walled tube the general formulas (39) and (42) for P and F can be made explicit without
specializing the form of energy function. For this purpose the small dimensionless parameter δ defined by
δ = (B − A)/A is introduced. Then, from the expression b2 = a2 + λ−1

z (B2 − A2) the approximation

b � a + δλ−1
z λ−2

a a (68)

is obtained to the first order in δ.
The expression (39) is then approximated to the same order as

P � b − a

a
λaω∗

λ(λa, λz, I4a), (69)

where I4a is the value of I4 on r = a, which is given by

I4a = q. (70)

Thus,

P � δλ−1
z λ−1

a ω∗
λ(λa, λz, q) (71)

to the first order in δ.
The corresponding approximation for F is obtained from (42) as

F � δπA2[2ω∗
λz

(λa, λz, q) − λaλ−1
z ω∗

λ(λa, λz, q)]. (72)

For the reduced energy function (43) with a general elastic term we can rewrite (71) as

P � δλ−1
a λ−1

z [ωλ(λa, λz) − ε−1λ−3
a λ−2

z q]. (73)
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Fig. 3. Plots of the dimensionless pressure P ∗ versus λa with η = 1.5 and λz = 1.2 based on Eqs. (45) and (54) for the neo-
Hookean, Ogden and Gent models in the first, second and third rows, respectively, and for fixed charges with q∗ = 0, 1, 5, 10
in the left-hand column and fixed potential difference in the right-hand column with e∗ = 0, 0.2, 0.35, 0.5. In each panel the
value of P ∗ decreases as the magnitude of the field measure increases

Clearly the influence of the charge (via q) on the pressure P becomes less and less with increasing
azimuthal stretch λa at fixed λz.

Similarly, for the reduced energy function, the approximation for F can be written

F � δπA2[2ωλz
(λa, λz) − λaλ−1

z ωλ(λa, λz) − ε−1λ−2
a λ−3

z q]. (74)

Thus, as for the pressure, with increasing circumferential stretch λa the influence of the electric field
expressed in terms of the charge q becomes less and less.
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Fig. 4. Plots of non-dimensional reduced axial load F ∗ versus λa with η = 1.5 and λz = 1.2 based on Eqs. (46) and (55)
for the neo-Hookean, Ogden and Gent models in the first, second and third rows, respectively, and for fixed charges with
q∗ = 0, 1, 5, 10 in the left-hand column and fixed potential difference with e∗ = 0, 0.2, 0.35, 0.5 in the right-hand column. In
each panel the value of F ∗ decreases as the magnitude of the field measure increases

To the same approximation the connection (53) yields

εE2
0 =

q

ελ4
zλ

4
a

, (75)

and (73) and (74) can be written in terms of E0 as

P � δλ−1
a λ−1

z [ωλ(λa, λz) − ελaλ2
zE

2
0 ] (76)

and

F � δπA2[2ωλz
(λa, λz) − λaλ−1

z ωλ(λa, λz) − ελ2
aλzE

2
0 ]. (77)
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Thus, for a given potential difference the term in (76) involving E0 is not affected by the azimuthal stretch
λa. Therefore, in this case, the effect of an electric field is uncoupled from the stretch λa for any fixed
λz. On the other hand, the reduced axial load will be affected significantly by increasing circumferential
stretch λa for given nonzero E0.

As far as the elastic contribution to the energy is concerned it is not necessary to restrict attention
to isotropic materials. For example, the theory can accommodate fibre reinforcement with symmetrically
arranged fibres, an arrangement commonly adopted for arterial wall tissue (see, for example, [22]), in
which case ω(λ, λz) is not in general a symmetric function of λ and λz in contrast to the isotropic case.
Otherwise the equations are unchanged. To include inextensible fibres, as in [13], an additional constraint
is required.

6. A note on activation

We now express the formulas for P and F from Sect. 5 in the dimensionless forms

P ∗ = λ−1
a λ−1

z ω̄λ(λa, λz) − λ−4
a λ−3

z q∗, F ∗ = 2ω̄λz
(λa, λz) − λaλ−1

z ω̄λ(λa, λz) − λ−2
a λ−3

z q∗, (78)

from (73) and (74), and

P ∗ = λ−1
a λ−1

z ω̄λ(λa, λz) − λze
∗, F ∗ = 2ω̄λz

(λa, λz) − λaλ−1
z ω̄λ(λa, λz) − λ2

aλze
∗, (79)

from (76) and (77), where q∗ = q/(με) and e∗ = εE2
0/μ, as used in Sect. 4, ω̄ = ω/μ, and P ∗ = P/(δμ)

and F ∗ = F/(δμπA2), the latter two non-dimensionalizations being different from those used in Sect. 4.
From either of (78) or (79) it follows that

F ∗ − λ2
aP ∗ = 2ω̄λz

(λa, λz) − 2λaλ−1
z ω̄λ(λa, λz). (80)

If there is no internal pressure (P ∗ = 0) then for a given (fixed) axial load F ∗ this determines a connection
between λa and λz (in general implicit), and, for an applied voltage (in terms of e∗) for example, Eq. (79)1
provides a connection between λz and e∗, i.e., it determines the change in λz due to activation from its
initial value at e∗ = 0. Similarly, if F ∗ = 0 and P ∗ is fixed activation with e∗ causes a change in λz.

For simplicity these general principles are now illustrated in respect of the neo-Hookean elasticity
model (63), for which

F ∗ − λ2
aP ∗ = 2(λz − λ2

aλ−1
z ). (81)

For P ∗ = 0 we then have

λ2
aλz = (1 − λ2

ze
∗)−1/2, (82)

which requires that λ2
ze

∗ < 1. Note, in particular, that in the limit λ2
ze

∗ → 1, λa → ∞ and the wall
thickness decreases to zero! Equation (81) requires that λz > λa for F ∗ > 0. From (81) it also follows
that

F ∗ = 2λz − 2λ−2
z (1 − λ2

ze
∗)−1/2. (83)

For several fixed positive values of F ∗ the interdependence of e∗ and λz is illustrated in Fig. 5a. In terms
of different variables similar plots were provided in [16] for different values of the initial axial stretch
(equivalently, different values of F ∗) and for a thick-walled tube with B/A = 2. In [16] the maxima on
the curves were interpreted as corresponding to loss of electromechanical stability.

For contrast we now consider activation at fixed pressure and zero axial load, so that, from (81),

P ∗ = 2λ−1
z − 2λzλ

−2
a , (84)

which requires λa > λz for P ∗ > 0, while F ∗ = 0 yields the quadratic

(λ2
ze

∗ + 1)λ4
a − 2λ2

zλ
2
a + λ−2

z = 0 (85)
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Fig. 5. a For P ∗ = 0: plots of the activation potential (as measured by e∗) versus the resulting axial stretch λz for the
indicated fixed values 0.3, 0.8, 1.3 of the dimensionless axial load F ∗ (corresponding to initial stretches, for e∗ = 0, of
approximately 1.053, 1.153, 1.27, respectively), together with the limiting curve defined by λ2

ze∗ = 1. b For F ∗ = 0: plots of
the activation potential (as measured by e∗) versus the resulting axial stretch λz for the indicated fixed values 0.4, 0.5, 0.6
of the dimensionless pressure P ∗ (corresponding to initial stretches of approximately 1.01, 1.02, 1.04, respectively), together
with the limiting curve defined by e∗ = λ4

z − λ−2
z

for λ2
a, the only solution of which consistent with λa > λz being

λ2
a =

λ2
z +

√
λ4

z − λ−2
z − e∗

λ2
ze

∗ + 1
, (86)

which requires λ4
z − λ−2

z > e∗. Hence

P ∗ = 2λ−1
z − 2λz(λ2

ze
∗ + 1)

λ2
z +

√
λ4

z − λ−2
z − e∗

, (87)

and this equation is the basis for the plots in Fig. 5b in which the interdependence of e∗ and λz is
illustrated for several fixed values of P ∗.

As for the case with P ∗ = 0 and fixed F ∗ there is a maximum actuation voltage for each considered
value of P ∗ and again the maxima are associated with loss of electromechanical stability. However, for
the considered neo-Hookean model in the absence of a voltage the radius can increase indefinitely as the
pressure approaches a finite asymptote, and this behaviour is a reflection of the limited applicability of
the neo-Hookean model, which is only realistic for stretches up to about 2. This should be borne in mind
when assessing the results of activation. For models such as those in [18] and [23] that are valid for a
wider range of deformations than for the neo-Hookean model there is no theoretical limit to the allowable
voltage, which can increase indefinitely with the axial stretch, possibly with an intermediate maximum
followed by a minimum, as is the case for a particular Arruda–Boyce model considered in [16].

Next, based on equations in (78), we consider activation with specified charge rather than a potential,
in which case, with P ∗ = 0 we obtain

λ2
aλz =

√
1 + q∗ (88)

and

F ∗ = 2λz − 2λ−2
z

√
1 + q∗. (89)

For F ∗ = 0, on the other hand, we have

λ2
aλz = λ3

z +
√

λ6
z − 1 − q∗ (90)
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Fig. 6. a For P ∗ = 0: plots of the activation charge (as measured by q∗) versus the resulting axial stretch λz for the indicated
fixed values 0.3, 1, 2 of the dimensionless axial load F ∗ (corresponding to initial stretches, for q∗ = 0, of approximately
1.05, 1.2, 1.47, respectively). b For F ∗ = 0: plots of the activation charge (as measured by q∗) versus the resulting axial
stretch λz for the indicated fixed values 0.52, 0.56, 0.6 of the dimensionless pressure P ∗ (corresponding to initial stretches
of approximately 1.02, 1.03, 1.04, respectively)

and

P ∗ = 2λ−1
z − 2λ2

z

λ3
z +

√
λ6

z − 1 − q∗ . (91)

Results for P ∗ = 0 and F ∗ = 0, respectively, are illustrated in Fig. 6a, b with q∗ plotted against λz

analogously to those in Fig. 5a, b for e∗ against λz. In Fig. 6a the plots are for F ∗ = 0, 0.3, 1, 2 and in
Fig. 6b for P ∗ = 0.52, 0.56, 6. In Fig. 6a, in contrast to Fig. 5a, there is no maximum and the stretch λz

increases monotonically with the applied charge, whereas in Fig. 6b there is a maximum for any pressure
below the maximum attainable (P ∗ � 0.75) with q∗ = 0 for the neo-Hookean material and this has a
similar ‘instability’ interpretation as for a fixed F ∗ at P ∗ = 0 in Fig. 5.

7. Concluding remarks

In this paper the general formulation of nonlinear isotropic electroelasticity in the form developed by
Dorfmann and Ogden [6] has been applied to the prototype problem of a circular cylindrical tube of
dielectric elastomer with compliant electrodes on its major surfaces. Without specialization of the consti-
tutive law general expressions have been obtained for the internal pressure in the tube and axial load on
its ends when subject to a radial electric field generated by a potential difference between the electrodes
while the circular cylindrical geometry is maintained. The general results are then applied to a material
model for which the electrostatic part of the constitutive law is linear with a deformation independent
permittivity, and the electroelastic response of the tube has been illustrated for three different models of
the elastic contribution to the constitutive law from rubber elasticity.

It is, of course, a simplifying assumption that the permittivity of the material is independent of the
deformation, an assumption that runs counter to experimental evidence, at least for some dielectric elas-
tomers. For example, in an extensive series of experiments on the acrylic elastomer VBH 4910 Wissler
and Mazza [24] showed that the permittivity decreases with stretching, and this should be taken into
account in the modelling in situations where the deformations are relatively large. Such an influence is
easily accommodated within the general constitutive framework presented in Sect. 2.4 and its specializa-
tion to the considered geometry in Sect. 3. However, in general this leads to a more complicated analysis
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and numerical solution will for the most part be required. Specific models which do include deforma-
tion dependent permittivity have been examined in a variety of boundary-value problems by Dorfmann
and Ogden [6,7,25–27] and [8], while the influence of deformation dependent permittivity on stability
considerations has been addressed in [28,29] and [30].

To incorporate a fibre structure within the constitutive law is feasible but requires a more involved
theory with a much larger set of invariants than those considered here in general, as exemplified in the
case of a transversely isotropic electroelastic material by Bustamante [31].
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