2,315 research outputs found

    CHEMISTRY AND ACIDITY OF CLOUD WATER AT MOUNT WASHINGTON, NH

    Get PDF

    A Guide to Overseas Employment for the Language Teacher

    Get PDF

    Basement structure of the northern Ontong Java Plateau

    Get PDF
    Site surveys conducted in conjunction with Leg 130 on the Ontong Java Plateau reveal a strong seismic reflector at 0.8 to 1.0 s below the seafloor that drilling at Sites 803 and 807 confirmed is Cretaceous basalt. This reflector is generally smooth, except for the northeastern margin of the plateau, where it forms a series of small, irregularly shaped depressions. Correlatable reflectors present at the bottom of the depressions are also present on the adjacent highs, suggesting that these depressions are original volcanic topography. A strong sub-basalt reflector occurs on many seismic profiles on the northeastern portion of the plateau. This reflection may be caused by a density and velocity contrast between pillow lavas and flood basalt flows or it may result from interbedded sediment and thus may represent significant lulls in volcanic activity. The presence of sub-basalt reflectors near Site 803 may indicate that later volcanic episodes occurred there, in contrast to Site 807, where this reflector was not observed and where older basalt ages were obtained

    The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment

    Get PDF
    The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided

    Over-Ocean Validation of the Global Convective Diagnostic

    Get PDF
    The global convective diagnostic (GCD) is a bispectral (infrared and water vapor), day–night scheme for operationally mapping deep convection by means of geostationary satellite images. This article describes a test of GCD performance over tropical and subtropical waters near North America. The test consists of six cases, each involving a convective cloud complex. A seventh case treats convection over land. For each case, a map of deep convection was constructed from image pairs from Geostationary Operational Environmental Satellite-12 (GOES-12). Case by case and for all maritime cases together, the GCD map was compared with a convective parameter derived from the radar on the Tropical Rainfall Measuring Mission (TRMM), a polar-orbiting satellite. In general, each GCD map showed a bloblike feature. In each case, the radar convective pixels typically fell within the GCD blob. However, (except for the land case) the GCD predicted far too many convective pixels. In the maritime cases overprediction was reduced (without correspondingly impairing other measures of performance) by lowering the nominal GCD threshold. With this adjustment in place, for the six maritime cases taken individually, the GCD tended to yield more consistent results than did a monospectral (infrared) convective scheme. With the cases combined, at the lower threshold the GCD performed somewhat better than one of the more stable versions of the infrared scheme. Comparison with lightning events (also observed by TRMM) suggests the possibility of future improvement to the GCD through the incorporation of geostationary satellite observations of lightning

    Shallow Convection on Day 261 of GATE: Mesoscale Arcs

    Get PDF
    On 18 September 1974, a cloud cluster growing in the GATE [Global Atmospheric Research Program] ship array was examined using aircraft flying close to one another at different heights, the geostationary satellite SMS-1, and radar, rawinsonde and ship data, with a view to elucidating mechanisms of convection. In this paper we concentrate analysis on cloudy convection in the moist layer. In and above southerly surface monsoon flow approaching the cluster, clouds indigenous to the moist layer took the form of rows of tiny cumulus, and of arcs of cumulus mediocris, with patterns different from those of deeper clouds. From satellite visible images, arcs were traced for periods exceeding 2 h. Airborne photography showed that the arcs were composed of many small clouds. Radar data showed that they originated after precipitation. Apparently, throughout their life cycle, they perpetuated the pattern of an initiating dense downdraft. Eventually they yielded isolated cumulus congestus, again bearing precipitation. Aircraft recorded the distribution of thermodynamic quantities and winds at altitudes within the mixed layer, and at 537 and 1067 m. These data indicated that the arcs persisted as mesoscale circulations driven by release of latent heat in the clouds, rather than being driven by the original density current at the surface. The cloudy circulations were vigorous near and above cloud base, becoming weaker upward through altitude 1 km. The entire mesoscale circulation systems were of horizontal scale roughly 40 km. The mesoscale cloud patterns of the moist layer appeared to play a primary role in heat transfer upward within this layer, and contributed to the forcing of showering midtropospheric cloud

    A Model for Calculating Desert Aerosol Turbidity Over the Oceans from Geostationary Satellite Data

    Get PDF
    A technique has been developed to infer the optical thickness of Saharan dust from Synchronous Meteorological Satellite (SMS) brightness measurements at visible wavelengths. The scattering model consists of an air layer, a dust layer and a lower boundary of variable albedo. Single-scatter properties of the dust computed from Mie theory were the basis for calculations by plane-parallel theory of radiative transfer in the dust layer. Radiative interactions between air and dust layers and the lower boundary were calculated with an adding version of the doubling scheme. Optical thickness was determined from satellite brightness measurements through a lookup table produced by the adding program. SMS visible sensors were calibrated from the prelaunch calibration measurements and measurements of sun and space. Error analysis and tests indicate a potential accuracy of ∼0.1 unit of optical thickness. The main limits on accuracy are digitizing resolution of the SMS visible signals, and mistaking clouds for dust in the satellite imagery. This technique of inferring Saharan dust turbidity has been verified and fine-tuned using surface turbidity measurements during GATE and corresponding SMS imagery

    Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean : evidence for accelerated porosity reduction?

    Get PDF
    Author Posting. © Crown Copyright, 2015. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 204 (2016): 1-20, doi:10.1093/gji/ggv416.The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity–depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions
    • …
    corecore