1,805 research outputs found

    Charge centers in CaF2_2: Ab initio calculation of elementary physical properties

    Full text link
    Charge centers in ionic crystals provide a channel for elementary interaction between electromagnetic radiation and the lattice. We calculate the electronic ground state energies which are needed to create a charge center -- namely a FF- and a HH-center. In well agreement with common understanding the FF-center results in being accompanied by a small lattice distortion whereas the HH-center is accompanied by a very large lattice deformation. Opposite to the common understanding the additional positive charge in the charge center results rather to be localized on a F43_4^{3-} complex than on a F2_2^--complex. From the ground states of the charge centers we derive binding energies, diffusion barriers and agglomeration energies for MM-center formation. These microscopic quantities are of fundamental interest to understand the dynamic processes which are initiated if the crystals interact with extreme intense deep ultra violet radiation. We further derive the equilibrium concentrations of charge centers in grown crystals.Comment: to appear in Phys. Rev. B in Aug. 2006, 11 Fig

    Reconstruction of Fundamental SUSY Parameters

    Get PDF
    We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e+^+e^- linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.Comment: 8 pages, latex, 7 figures, expanded version of contributions to the proceedings of ICHEP.2002 (Amstersdam) and LCWS.2002 (Jeju Island

    Interference Effects, Time Reversal Violation and Search for New Physics in Hadronic Weak Decays

    Get PDF
    We propose some methods for studying hadronic sequential two-body decays involving more spinning particles. It relies on the analysis of T-odd and T-even asymmetries, which are related to interference terms. The latter asymmetries turn out to be as useful as the former ones in inferring time reversal violating observables; these in turn may be sensitive, under some particular conditions, to possible contributions beyond the standard model. Our main result is that one can extract such observables even after integrating the differential decay width over almost all of the available angles. Moreover we find that the correlations based exclusively on momenta are quite general, since they provide as much information as those involving one or more spins. We generalize some methods already proposed in the literature for particular decay channels, but we also pick out a new kind of time reversal violating observables. Our analysis could be applied, for example, to data of LHCb experiment.Comment: 35 page

    Normal tau polarisation as a sensitive probe of CP violation in chargino decay

    Full text link
    CP violation in the spin-spin correlations in chargino production and subsequent two-body decay into a tau and a tau-sneutrino is studied at the ILC. From the normal polarisation of the tau, an asymmetry is defined to test the CP-violating phase of the higgsino mass parameter \mu. Asymmetries of more than \pm70% are obtained, also in scenarios with heavy first and second generation sfermions. Bounds on the statistical significances of the CP asymmetries are estimated. As a result, the normal tau polarisation in the chargino decay is one of the most sensitive probes to constrain or measure the phase \phi_\mu at the ILC, motivating further detailed experimental studies.Comment: 20 pages, 10 figures, gzipped tar fil

    Physics Opportunities at mu+mu- Higgs Factories

    Full text link
    We update theoretical studies of the physics opportunities presented by mu+mu- Higgs factories. Interesting measurements of the Standard Model Higgs decays into {\bar b}b, tau+tau- and WW* may be possible if the Higgs mass is less than about 160 GeV, as preferred by the precision electroweak data, the mass range being extended by varying appropriately the beam energy resolution. A suitable value of the beam energy resolution would also enable the uncertainty in the b-quark mass to be minimized, facilitating measurements of parameters in the MSSM at such a first mu+mu- Higgs factory. These measurements would be sensitive to radiative corrections to the Higgs-fermion-antifermion decay vertices, which may violate CP. Radiative corrections in the MSSM may also induce CP violation in Higgs-mass mixing, which can be probed via various asymmetries measurable using polarized mu+mu- beams. In addition, Higgs-chargino couplings may be probed at a second mu+mu- Higgs factory.Comment: Report of the Higgs factory working group of the ECFA-CERN study on Neutrino Factory & Muon Storage Rings at CERN. 28 p

    The effects of interface morphology on Schottky barrier heights: a case study on Al/GaAs(001)

    Full text link
    The problem of Fermi-level pinning at semiconductor-metal contacts is readdressed starting from first-principles calculations for Al/GaAs. We give quantitative evidence that the Schottky barrier height is very little affected by any structural distortions on the metal side---including elongations of the metal-semiconductor bond (i.e. interface strain)---whereas it strongly depends on the interface structure on the semiconductor side. A rationale for these findings is given in terms of the interface dipole generated by the ionic effective charges.Comment: 5 pages, latex file, 2 postscript figures automatically include

    The long-wavelength behaviour of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems

    Get PDF
    The polarization-dependence of the exchange-correlation (XC) energy functional of periodic insulators within Kohn-Sham (KS) density-functional theory requires a O(1/q2){\cal O} (1/q^2) divergence in the XC kernel for small vectors q. This behaviour, exemplified for a one-dimensional model semiconductor, is also observed when an insulator happens to be described as a KS metal, or vice-versa. Although it can occur in the exchange-only kernel, it is not found in the usual local, semi-local or even non-local approximations to KS theory. We also show that the test-charge and electronic definitions of the macroscopic dielectric constant differ from one another in exact KS theory, but are equivalent in the above-mentioned approximations

    One-loop corrections to the chargino and neutralino mass matrices in the on-shell scheme

    Get PDF
    We present a consistent procedure for the calculation of the one-loop corrections to the charginos and neutralinos by using their on-shell mass matrices. The on-shell gaugino mass parameters M and M', and the Higgsino mass parameter \mu are defined by the elements of these on-shell mass matrices. The on-shell mass matrices are different by finite one-loop corrections from the tree-level ones given in terms of the on-shell parameters. When the on-shell M and \mu are determined by the chargino sector, the neutralino masses receive corrections up to 4%. This must be taken into account in precision measurements at future e^+ e^- linear colliders.Comment: One reference added, typo in eq. (20) correcte

    A new CP violating observable for the LHC

    Full text link
    We study a new type of CP violating observable that arises in three body decays that are dominated by an intermediate resonance. If two interfering diagrams exist with different orderings of final state particles, the required CP-even phase arises due to the different virtualities of the resonance in each of the two diagrams. This method can be an important tool for accessing new CP phases at the LHC and future colliders.Comment: 22 pages, v2: discussion of charged particle decays and a few references added v3: typos corrected, matches published versio

    Transverse Polarization Signatures of Extra Dimensions at Linear Colliders

    Get PDF
    If significant longitudinal polarization of both the electrons and positrons becomes feasible at a future linear collider(LC), it may be possible to use spin rotators to produce transversely polarized beams. Using the transverse polarization of both beams, new azimuthal spin asymmetries can be formed which will be sensitive probes for new physics beyond the Standard Model. Here we demonstrate that these asymmetries are particularly sensitive to the exchange of Kaluza-Klein towers of gravitons, or other spin-2 fields, that are predicted to exist in higher dimensional theories which address the hierarchy problem. These new asymmetries are shown to be able to extend the search reach for such new physics by more than a factor of two, provide an additional tool for isolating the signatures for spin-2 exchange up to mass scales in excess of 10s10\sqrt s, and can be used to help differentiate among the proposed solutions to the hierarchy problem below the production threshold for new particles.Comment: 22 pages, 6 figs. LaTe
    corecore