533 research outputs found

    Pion and Kaon Vector Form Factors

    Get PDF
    We develop a unitarity approach to consider the final state interaction corrections to the tree level graphs calculated from Chiral Perturbation Theory (χPT\chi PT) allowing the inclusion of explicit resonance fields. The method is discussed considering the coupled channel pion and kaon vector form factors. These form factors are then matched with the one loop χPT\chi PT results. A very good description of experimental data is accomplished for the vector form factors and for the ππ\pi\pi P-wave phase shifts up to s1.2\sqrt{s}\lesssim 1.2 GeV, beyond which multiparticle states play a non negligible role. In particular the low and resonance energy regions are discussed in detail and for the former a comparison with one and two loop χPT\chi PT is made showing a remarkable coincidence with the two loop χPT\chi PT results.Comment: 20 pages, 7 figs, to appear in Phys. Rev.

    Electromagnetic Meson Form Factors in the Salpeter Model

    Get PDF
    We present a covariant scheme to calculate mesonic transitions in the framework of the Salpeter equation for qqˉq\bar{q}-states. The full Bethe Salpeter amplitudes are reconstructed from equal time amplitudes which were obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a confining plus an instanton induced interaction. This method is applied to calculate electromagnetic form factors and decay widths of low lying pseudoscalar and vector mesons including predictions for CEBAF experiments. We also describe the momentum transfer dependence for the processes π0,η,ηγγ\pi^0,\eta,\eta'\rightarrow\gamma\gamma^*.Comment: 22 pages including 10 figure

    A consistent treatment for pion form factors in space-like and time-like regions

    Get PDF
    We write down some relevant matrix elements for the scattering and decay processes of the pion by considering a quark-meson vertex function. The pion charge and transition form factors FπF_\pi, FπγF_{\pi\gamma}, and FπγF_{\pi\gamma^*} are extracted from these matrix elements using a relativistic quark model on the light-front. We found that, the form factors FπF_\pi and FπγF_{\pi\gamma} in the space-like region agree well with experiment. Furthermore, the branching ratios of all observed decay modes of the neutral pion, that are related to the form factors FπγF_{\pi\gamma} and FπγF_{\pi\gamma^*} in the time-like region, are all consistent with the data as well. Additionally, FπF_\pi in the time-like region, which deals with the nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    Solar thermal hybrids for combustion power plant: A growing opportunity

    Get PDF
    The development of technologies to hybridise concentrating solar thermal energy (CST) and combustion technologies, is driven by the potential to provide both cost-effective CO2 mitigation and firm supply. Hybridisation, which involves combining the two energy sources within a single plant, offers these benefits over the stand-alone counterparts through the use of shared infrastructure and increased efficiency. In the near-term, hybrids between solar and fossil fuelled systems without carbon capture offer potential to lower the use of fossil fuels, while in the longer term they offer potential for low-cost carbon-neutral or carbon-negative energy. The integration of CST into CO2 capture technologies such as oxy-fuel combustion and chemical looping combustion is potentially attractive because the same components can be used for both CO2 capture and the storage of solar energy, to reduce total infrastructure and cost. The use of these hybrids with biomass and/or renewable fuels, offers the additional potential for carbon-negative energy with relatively low cost. In addition to reviewing these technologies, we propose a methodology for classifying solar-combustion hybrid technologies and assess the progress and challenges of each. Particular attention is paid to "direct hybrids", which harness the two energy sources in a common solar receiver or reactor to reduce total infrastructure and losses.G.J.Nathan, M.Jafarian, B.B.Dally, W.L.Saw, P.J.Ashman, E.Hu, A.Steinfel

    Pion-photon and photon-pion transition form factors in light-cone formalism

    Full text link
    We derive the minimal Fock-state expansions of the pion and the photon wave functions in light-cone formalism, then we calculate the pion-photon and the photon-pion transition form factors of γπ0γ\gamma ^{\ast}\pi ^{0}\to \gamma and γγπ0\gamma ^{\ast}\gamma \to \pi ^{0} processes by employing these quark-antiquark wave functions of the pion and the photon. We find that our calculation for the γγπ0\gamma ^{\ast}\gamma \to \pi ^{0} transition form factor agrees with the experimental data at low and moderately high energy scale. Moreover, the physical differences and inherent connections between the transition form factors of γπ0γ\gamma ^{\ast}\pi ^{0}\to \gamma and γγπ0 \gamma ^{\ast}\gamma \to \pi ^{0} have been illustrated, which indicate that these two physical processes are intrinsically related. In addition, we also discuss the π0γγ\pi ^{0}\to \gamma \gamma form factor and the decay width Γ(πγγ) \mathit{\Gamma}(\pi \to \gamma \gamma) at Q2=0Q^{2}=0.Comment: 20 pages, 2 figure

    High-throughput sequence alignment using Graphics Processing Units

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and <it>de novo </it>genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies.</p> <p>Results</p> <p>This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies.</p> <p>Conclusion</p> <p>MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.</p

    Orbital character of the spin-reorientation transition in TbMn6_6Sn6_6

    Full text link
    Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6_{6}Sn6_{6}, the uniaxial magnetic anisotropy of the Tb3+^{3+} ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR=310T_{SR}=310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSRT_{SR} confirms that orbital fluctuations are slow on magnetic and electronic time scales << ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.Comment: 21 page
    corecore