86 research outputs found

    IN VIVO EVALUATION OF ANKLE LIGAMENT FORCES USING A FIBER OPTIC TRANSDUCER

    Get PDF
    INTRODUCTION: Successful injury prevention, treatment and rehabilitation require a clear understanding of ligament function and forces acting on these ligaments, especially for injuries to the lateral ankle ligaments, which are very common in many kinds of sports. Several authors (Bahr et al. 1998; Renström, et al., 1988; Sauer et al., 1978) investigated forces or tensile strength of the ligament talofibulare anterior (LTFA) in vitro. There is, however, a lack of information of investigations with direct measurement of forces in this structure. The aim of this study was to apply a fiber optic transducer in vivo in order to register forces in the LTFA during different natural movements of the ankle joint under varied load conditions

    An atlas of seabed biodiversity for Aotearoa New Zealand

    Get PDF
    \ua9 2023 Copernicus GmbH. All rights reserved. The waters of Aotearoa New Zealand span over 4.2ĝ€\uafmillionĝ€\uafkm2 of the South Pacific Ocean and harbour a rich diversity of seafloor-Associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-Access database Zenodo under 10.5281/zenodo.7083642 (Stephenson et al., 2022)

    Proximal adductor avulsions are rarely isolated but usually involve injury to the PLAC and pectineus: Descriptive MRI findings in 145 athletes

    Get PDF
    Purpose The purpose of the study is to review the MRI findings in a cohort of athletes who sustained acute traumatic avulsions of the adductor longus fibrocartilaginous entheses, and to investigate related injuries namely the pyramidalis- anterior pubic ligament - adductor longus complex (PLAC). Associated muscle and soft tissue injuries were also assessed. Methods The MRIs were reviewed for a partial or complete avulsion of the adductor longus fibrocartilage, as well as continuity or separation of the adductor longus from the pyramidalis. The presence of a concurrent partial pectineus tear was noted. Demographic data was analysed. Linear and logistic regression was used to examine associations between injuries. Results The mean age was 32.5 (SD 10.9). The pyramidalis was absent in 3 of 145 patients. 85 of 145 athletes were professional and 52 competed in the football Premier League. 132 had complete avulsions and 13 partial. The adductor longus was in continuity with pyramidalis in 55 athletes, partially separated in seven and completely in 81 athletes. 48 athletes with a PLAC injury had a partial pectineus avulsion. Six types of PLAC injuries patterns were identified. Associated rectus abdominis injuries were rare and only occurred in five patients (3.5%). Conclusion The proximal adductor longus forms part of the PLAC and is rarely an isolated injury. The term PLAC injury is more appropriate term. MRI imaging should assess all the anatomical components of the PLAC post-injury, allowing recognition of the differentpatterns of injury

    Comparing the Invasibility of Experimental “Reefs” with Field Observations of Natural Reefs and Artificial Structures

    Get PDF
    Natural systems are increasingly being modified by the addition of artificial habitats which may facilitate invasion. Where invaders are able to disperse from artificial habitats, their impact may spread to surrounding natural communities and therefore it is important to investigate potential factors that reduce or enhance invasibility. We surveyed the distribution of non-indigenous and native invertebrates and algae between artificial habitats and natural reefs in a marine subtidal system. We also deployed sandstone plates as experimental ‘reefs’ and manipulated the orientation, starting assemblage and degree of shading. Invertebrates (non-indigenous and native) appeared to be responding to similar environmental factors (e.g. orientation) and occupied most space on artificial structures and to a lesser extent reef walls. Non-indigenous invertebrates are less successful than native invertebrates on horizontal reefs despite functional similarities. Manipulative experiments revealed that even when non-indigenous invertebrates invade vertical “reefs”, they are unlikely to gain a foothold and never exceed covers of native invertebrates (regardless of space availability). Community ecology suggests that invertebrates will dominate reef walls and algae horizontal reefs due to functional differences, however our surveys revealed that native algae dominate both vertical and horizontal reefs in shallow estuarine systems. Few non-indigenous algae were sampled in the study, however where invasive algal species are present in a system, they may present a threat to reef communities. Our findings suggest that non-indigenous species are less successful at occupying space on reef compared to artificial structures, and manipulations of biotic and abiotic conditions (primarily orientation and to a lesser extent biotic resistance) on experimental “reefs” explained a large portion of this variation, however they could not fully explain the magnitude of differences

    An atlas of seabed biodiversity for Aotearoa New Zealand

    Get PDF
    The waters of Aotearoa New Zealand span over 4.2 million km2 of the South Pacific Ocean and harbour a rich diversity of seafloor-associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-access database Zenodo under https://doi.org/10.5281/zenodo.7083642 (Stephenson et al., 2022).</p

    Video transects reveal that tidal sand waves affect the spatial distribution of benthic organisms and sand ripples

    Get PDF
    The sandy seabed of shallow coastal shelf seas displays morphological patterns of various dimensions. The seabed also harbors a rich ecosystem. Increasing pressure from human-induced disturbances necessitates further study on drivers of benthic community distributions over morphological patterns. Moreover, a greater understanding of the sand ripple distribution over tidal sand waves may improve morphological model predictions. Here we analyzed the biotic abundance and ripple morphology in sand wave troughs and crests using video transects. We found that both the epibenthos and endobenthos are significantly more abundant in sand wave troughs, where ripples are less abundant and more irregularly shaped. Finally, we show that camera systems are relatively quick and effective tools to study biotic spatial patterns in relation to seabed morphology

    Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach

    Full text link

    Meniscal tear—a feature of osteoarthritis

    Full text link

    Synthese und Eigenschaften einiger Vorstufen der [3.3] (2.5) (7,7,8,8-Tetracyanochinodimethano) phane

    No full text
    • 

    corecore