973 research outputs found

    Potential Implications of a Special Safeguard Mechanism in the WTO: the Case of Wheat

    Get PDF
    The Special Safeguard Mechanism (SSM) was a key issue in the July 2008 failure to reach agreement in the WTO negotiations under the Doha Development Agenda. It includes both price (P-SSM) and quantity-triggered measures (Q-SSM). This paper uses a stochastic simulation model of the world wheat market to investigate the effects of policy makers implementing policies based on the SSM rules. As expected, implementation of the Q-SSM is found to reduce imports, raise domestic prices, and boost mean domestic production in the SSM regions. However, rather than insulating countries that use it from price volatility, it would actually increase domestic price volatility in developing countries, largely by restricting imports when domestic output is low and prices high. We estimate that implementation of the Q-SSM would shrink average wheat imports by nearly 50% in some regions, with world wheat trade falling by 4.7%. The P-SSM is discriminatory against low price, developing country exporters and tends to contribute to additional producer price instability.Safeguard, SSM, WTO, volatility, wheat, food security, Agricultural and Food Policy, International Development, Q1, Q17, Q18,

    On the Importance of Frictional Energy Dissipation in the Prevention of Undesirable Self-Excited Vibrations in Gas Foil Bearing Rotor Systems

    Get PDF
    In this contribution, a nonlinear and fully coupled fluid–structure–rotor interaction model of a gas foil bearing rotor system is presented. Aiming at the reduction of undesirable self-excited vibrations, many common bearing designs feature a compliant and slightly movable multi-part foil structure inside the lubrication gap. The present paper discusses the general impact of frictional energy dissipation within the foil structure by adding equivalent viscous damping to the widespread simple elastic foundation model. For the computational analysis, the PDEs describing the fluid pressure distribution and the foil structure deformation field are spatially discretized using finite difference schemes. After suitable nondimensionalization of the resulting system of nonlinear ODEs, a corresponding state-space representation is deduced. Using numerical simulation tools, the stability of equilibrium points and the occurrence of self-excited vibrations are addressed and possible bifurcation scenarios are discussed. Summing up all results, frictional energy dissipation proves to be of crucial importance with regard to the reduction or prevention of undesirable self-excited vibrations in gas foil bearing rotor systems

    An Evaluation Framework for Adaptive Security for the IoT in eHealth

    Get PDF
    The work presented here has been carried out in the project ASSET – Adaptive Security for Smart Internet of Things in eHealth (2012–2015) funded by the Research Council of Norway in the VERDIKT programme. WThe work presented here has been carried out in the project ASSET – Adaptive Security for Smart Internet of Things in eHealth (2012–2015) funded by the Research Council of Norway in the VERDIKT programme. W—We present an assessment framework to evaluate adaptive security algorithms specifically for the Internet of Things (IoT) in eHealth applications. The successful deployment of the IoT depends on ensuring security and privacy, which need to adapt to the processing capabilities and resource use of the IoT. We develop a framework for the assessment and validation of context-aware adaptive security solutions for the IoT in eHealth that can quantify the characteristics and requirements of a situation. We present the properties to be fulfilled by a scenario to assess and quantify characteristics for the adaptive security solutions for eHealth. We then develop scenarios for patients with chronic diseases using biomedical sensors. These scenarios are used to create storylines for a chronic patient living at home or being treated in the hospital. We show numeric examples for how to apply our framework. We also present guidelines how to integrate our framework to evaluating adaptive security solutionsThe work presented here has been carried out in the project ASSET – Adaptive Security for Smart Internet of Things in eHealth (2012–2015) funded by the Research Council of Norway in the VERDIKT programme

    Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    Full text link
    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated

    Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature

    Full text link
    Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins
    • …
    corecore