485 research outputs found
Social determinants of content selection in the age of (mis)information
Despite the enthusiastic rhetoric about the so called \emph{collective
intelligence}, conspiracy theories -- e.g. global warming induced by chemtrails
or the link between vaccines and autism -- find on the Web a natural medium for
their dissemination. Users preferentially consume information according to
their system of beliefs and the strife within users of opposite narratives may
result in heated debates. In this work we provide a genuine example of
information consumption from a sample of 1.2 million of Facebook Italian users.
We show by means of a thorough quantitative analysis that information
supporting different worldviews -- i.e. scientific and conspiracist news -- are
consumed in a comparable way by their respective users. Moreover, we measure
the effect of the exposure to 4709 evidently false information (satirical
version of conspiracy theses) and to 4502 debunking memes (information aiming
at contrasting unsubstantiated rumors) of the most polarized users of
conspiracy claims. We find that either contrasting or teasing consumers of
conspiracy narratives increases their probability to interact again with
unsubstantiated rumors.Comment: misinformation, collective narratives, crowd dynamics, information
spreadin
Mobile Communication Signatures of Unemployment
The mapping of populations socio-economic well-being is highly constrained by
the logistics of censuses and surveys. Consequently, spatially detailed changes
across scales of days, weeks, or months, or even year to year, are difficult to
assess; thus the speed of which policies can be designed and evaluated is
limited. However, recent studies have shown the value of mobile phone data as
an enabling methodology for demographic modeling and measurement. In this work,
we investigate whether indicators extracted from mobile phone usage can reveal
information about the socio-economical status of microregions such as districts
(i.e., average spatial resolution < 2.7km). For this we examine anonymized
mobile phone metadata combined with beneficiaries records from unemployment
benefit program. We find that aggregated activity, social, and mobility
patterns strongly correlate with unemployment. Furthermore, we construct a
simple model to produce accurate reconstruction of district level unemployment
from their mobile communication patterns alone. Our results suggest that
reliable and cost-effective economical indicators could be built based on
passively collected and anonymized mobile phone data. With similar data being
collected every day by telecommunication services across the world,
survey-based methods of measuring community socioeconomic status could
potentially be augmented or replaced by such passive sensing methods in the
future
Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world
We study behavioral action sequences of players in a massive multiplayer
online game. In their virtual life players use eight basic actions which allow
them to interact with each other. These actions are communication, trade,
establishing or breaking friendships and enmities, attack, and punishment. We
measure the probabilities for these actions conditional on previous taken and
received actions and find a dramatic increase of negative behavior immediately
after receiving negative actions. Similarly, positive behavior is intensified
by receiving positive actions. We observe a tendency towards anti-persistence
in communication sequences. Classifying actions as positive (good) and negative
(bad) allows us to define binary 'world lines' of lives of individuals.
Positive and negative actions are persistent and occur in clusters, indicated
by large scaling exponents alpha~0.87 of the mean square displacement of the
world lines. For all eight action types we find strong signs for high levels of
repetitiveness, especially for negative actions. We partition behavioral
sequences into segments of length n (behavioral `words' and 'motifs') and study
their statistical properties. We find two approximate power laws in the word
ranking distribution, one with an exponent of kappa-1 for the ranks up to 100,
and another with a lower exponent for higher ranks. The Shannon n-tuple
redundancy yields large values and increases in terms of word length, further
underscoring the non-trivial statistical properties of behavioral sequences. On
the collective, societal level the timeseries of particular actions per day can
be understood by a simple mean-reverting log-normal model.Comment: 6 pages, 5 figure
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
Big-Data-Driven Materials Science and its FAIR Data Infrastructure
This chapter addresses the forth paradigm of materials research -- big-data
driven materials science. Its concepts and state-of-the-art are described, and
its challenges and chances are discussed. For furthering the field, Open Data
and an all-embracing sharing, an efficient data infrastructure, and the rich
ecosystem of computer codes used in the community are of critical importance.
For shaping this forth paradigm and contributing to the development or
discovery of improved and novel materials, data must be what is now called FAIR
-- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets
the stage for advances of methods from artificial intelligence that operate on
large data sets to find trends and patterns that cannot be obtained from
individual calculations and not even directly from high-throughput studies.
Recent progress is reviewed and demonstrated, and the chapter is concluded by a
forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W.
Andreoni), Springer 2018/201
Delineating Geographical Regions with Networks of Human Interactions in an Extensive Set of Countries
Large-scale networks of human interaction, in particular country-wide telephone call networks, can be used to redraw geographical maps by applying algorithms of topological community detection. The geographic projections of the emerging areas in a few recent studies on single regions have been suggested to share two distinct properties: first, they are cohesive, and second, they tend to closely follow socio-economic boundaries and are similar to existing political regions in size and number. Here we use an extended set of countries and clustering indices to quantify overlaps, providing ample additional evidence for these observations using phone data from countries of various scales across Europe, Asia, and Africa: France, the UK, Italy, Belgium, Portugal, Saudi Arabia, and Ivory Coast. In our analysis we use the known approach of partitioning country-wide networks, and an additional iterative partitioning of each of the first level communities into sub-communities, revealing that cohesiveness and matching of official regions can also be observed on a second level if spatial resolution of the data is high enough. The method has possible policy implications on the definition of the borderlines and sizes of administrative regions.National Science Foundation (U.S.)Singapore-MIT Alliance for Research and Technolog
Exact travelling wave solutions of a beam equation
In this paper we make a full analysis of the symmetry reductions of a beam equation by using
the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave
reductions depending on the form of an arbitrary function. We have found several new classes
of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic
functions, Wadati solitons and compactons. Several classes of coherent structures are displayed by
some of the solutions: kinks, solitons, two humps compactons.17 página
- …