485 research outputs found

    Social determinants of content selection in the age of (mis)information

    Full text link
    Despite the enthusiastic rhetoric about the so called \emph{collective intelligence}, conspiracy theories -- e.g. global warming induced by chemtrails or the link between vaccines and autism -- find on the Web a natural medium for their dissemination. Users preferentially consume information according to their system of beliefs and the strife within users of opposite narratives may result in heated debates. In this work we provide a genuine example of information consumption from a sample of 1.2 million of Facebook Italian users. We show by means of a thorough quantitative analysis that information supporting different worldviews -- i.e. scientific and conspiracist news -- are consumed in a comparable way by their respective users. Moreover, we measure the effect of the exposure to 4709 evidently false information (satirical version of conspiracy theses) and to 4502 debunking memes (information aiming at contrasting unsubstantiated rumors) of the most polarized users of conspiracy claims. We find that either contrasting or teasing consumers of conspiracy narratives increases their probability to interact again with unsubstantiated rumors.Comment: misinformation, collective narratives, crowd dynamics, information spreadin

    Mobile Communication Signatures of Unemployment

    Full text link
    The mapping of populations socio-economic well-being is highly constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess; thus the speed of which policies can be designed and evaluated is limited. However, recent studies have shown the value of mobile phone data as an enabling methodology for demographic modeling and measurement. In this work, we investigate whether indicators extracted from mobile phone usage can reveal information about the socio-economical status of microregions such as districts (i.e., average spatial resolution < 2.7km). For this we examine anonymized mobile phone metadata combined with beneficiaries records from unemployment benefit program. We find that aggregated activity, social, and mobility patterns strongly correlate with unemployment. Furthermore, we construct a simple model to produce accurate reconstruction of district level unemployment from their mobile communication patterns alone. Our results suggest that reliable and cost-effective economical indicators could be built based on passively collected and anonymized mobile phone data. With similar data being collected every day by telecommunication services across the world, survey-based methods of measuring community socioeconomic status could potentially be augmented or replaced by such passive sensing methods in the future

    Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world

    Get PDF
    We study behavioral action sequences of players in a massive multiplayer online game. In their virtual life players use eight basic actions which allow them to interact with each other. These actions are communication, trade, establishing or breaking friendships and enmities, attack, and punishment. We measure the probabilities for these actions conditional on previous taken and received actions and find a dramatic increase of negative behavior immediately after receiving negative actions. Similarly, positive behavior is intensified by receiving positive actions. We observe a tendency towards anti-persistence in communication sequences. Classifying actions as positive (good) and negative (bad) allows us to define binary 'world lines' of lives of individuals. Positive and negative actions are persistent and occur in clusters, indicated by large scaling exponents alpha~0.87 of the mean square displacement of the world lines. For all eight action types we find strong signs for high levels of repetitiveness, especially for negative actions. We partition behavioral sequences into segments of length n (behavioral `words' and 'motifs') and study their statistical properties. We find two approximate power laws in the word ranking distribution, one with an exponent of kappa-1 for the ranks up to 100, and another with a lower exponent for higher ranks. The Shannon n-tuple redundancy yields large values and increases in terms of word length, further underscoring the non-trivial statistical properties of behavioral sequences. On the collective, societal level the timeseries of particular actions per day can be understood by a simple mean-reverting log-normal model.Comment: 6 pages, 5 figure

    Individualization as driving force of clustering phenomena in humans

    Get PDF
    One of the most intriguing dynamics in biological systems is the emergence of clustering, the self-organization into separated agglomerations of individuals. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is clustering of opinions in human populations. The puzzle is particularly pressing if opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing opinion formation models suggest that "monoculture" is unavoidable in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness did not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution of the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct simulation experiments to demonstrate that with this kind of noise, a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Delineating Geographical Regions with Networks of Human Interactions in an Extensive Set of Countries

    Get PDF
    Large-scale networks of human interaction, in particular country-wide telephone call networks, can be used to redraw geographical maps by applying algorithms of topological community detection. The geographic projections of the emerging areas in a few recent studies on single regions have been suggested to share two distinct properties: first, they are cohesive, and second, they tend to closely follow socio-economic boundaries and are similar to existing political regions in size and number. Here we use an extended set of countries and clustering indices to quantify overlaps, providing ample additional evidence for these observations using phone data from countries of various scales across Europe, Asia, and Africa: France, the UK, Italy, Belgium, Portugal, Saudi Arabia, and Ivory Coast. In our analysis we use the known approach of partitioning country-wide networks, and an additional iterative partitioning of each of the first level communities into sub-communities, revealing that cohesiveness and matching of official regions can also be observed on a second level if spatial resolution of the data is high enough. The method has possible policy implications on the definition of the borderlines and sizes of administrative regions.National Science Foundation (U.S.)Singapore-MIT Alliance for Research and Technolog

    Exact travelling wave solutions of a beam equation

    Get PDF
    In this paper we make a full analysis of the symmetry reductions of a beam equation by using the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave reductions depending on the form of an arbitrary function. We have found several new classes of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic functions, Wadati solitons and compactons. Several classes of coherent structures are displayed by some of the solutions: kinks, solitons, two humps compactons.17 página
    • …
    corecore