1,422 research outputs found

    Entwicklung neuer Strategien zur Mehrung und optimierten Nutzung der Bodenfruchtbarkeit

    Get PDF
    In vier Teilprojekten wurden Strategien zur Optimierung des ökologischen Anbaus von Ackerbohnen und Erbsen in Feldversuchen untersucht. Im Fokus stand der Einfluss verschiedener Formen reduzierter Bodenbearbeitung und temporärer Direktsaat im Verbund mit Mulchen, Zwischenfruchtanbau und gezielter Nährstoffversorgung auf Ertragsleistung und Unkrautvorkommen. Das Wachstum von Ackerbohnen und Erbsen war nach Direktsaat im Vergleich zu Pflugbearbeitung retardiert und glich sich erst mit zunehmendem Vegetationsverlauf an. In der Mehrzahl der Versuche wurde bei Nichtvorhandensein perennierender Unkräuter bei insgesamt vglw. niedrigem Ertragsniveau kein fördernder Einfluss der Pflugbearbeitung auf den Kornertrag festgestellt. Nährstoffmangel, bspw. von Schwefel, kann bei Ackerbohnen ertragslimitierend sein und ist durch entsprechende DRIS basierte Düngungsverfahren behebbar. Nichtlegume Zwischenfrüchte erhöhten die N2-Nettofixierleistung von Ackerbohnen. Gezielte Verfahren reduzierter Bodenbearbeitung bzw. temporärer Direktsaat für Ackerbohnen, bspw. mit Nutzung von Strohmulch, sind bei geeigneten Standortbedingungen insbesondere geringer Unkrautdruck ohne wirtschaftliche Ertragseinbußen möglich; im Falle von Erbsen wird das Anbaurisiko deutlich erhöht

    Possible large phase in psi(2S) -> 1-0- Decays

    Full text link
    The strong and the electromagnetic amplitudes are analyzed on the basis of the measurements of J/psi, psi(2S) -> 1-0- in e+e- experiments. The currently available experimental information is revised with inclusion of the contribution from e+e- -> gamma * -> 1-0- . The study shows that a large phase around minus 90 degree between the strong and the electromagnetic amplitudes could not be ruled out by the experimental data for psi(2S).Comment: 4 page

    Ratio of Hadronic Decay Rates of J\psi and \psi(2S) and the \rho\pi Puzzle

    Full text link
    The so-called \rho\pi puzzle of J\psi and \psi(2S) decays is examined using the experimental data available to date. Two different approaches were taken to estimate the ratio of J\psi and \psi(2S) hadronic decay rates. While one of the estimates could not yield the exact ratio of \psi(2S) to J\psi inclusive hadronic decay rates, the other, based on a computation of the inclusive ggg decay rate for \psi(2S) (J\psi) by subtracting other decay rates from the total decay rate, differs by two standard deviations from the naive prediction of perturbative QCD, even though its central value is nearly twice as large as what was naively expected. A comparison between this ratio, upon making corrections for specific exclusive two-body decay modes, and the corresponding experimental data confirms the puzzles in J\psi and \psi(2S) decays. We find from our analysis that the exclusively reconstructed hadronic decays of the \psi(2S) account for only a small fraction of its total decays, and a ratio exceeding the above estimate should be expected to occur for a considerable number of the remaining decay channels. We also show that the recent new results from the BES experiment provide crucial tests of various theoretical models proposed to explain the puzzle.Comment: 8 pages, no figure, 4 table

    Hadroproduction and Polarization of Charmonium

    Get PDF
    In the limit of heavy quark mass, the production cross section and polarization of quarkonia can be calculated in perturbative QCD. We study the pp_\perp-averaged production of charmonium states in πN\pi N collisions at fixed target energies. The data on the relative production rates of \jp and χJ\chi_J is found to disagree with leading twist QCD. The polarization of the \jp indicates that the discrepancy is not due to poorly known parton distributions nor to the size of higher order effects (KK-factors). Rather, the disagreement suggests important higher twist corrections, as has been surmised earlier from the nuclear target AA-dependence of the production cross section.Comment: 19 page

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Observation of classically `forbidden' electromagnetic wave propagation and implications for neutrino detection

    Full text link
    Ongoing experimental efforts in Antarctica seek to detect ultra-high energy neutrinos by measurement of radio-frequency (RF) Askaryan radiation generated by the collision of a neutrino with an ice molecule. An array of RF antennas, deployed either in-ice or in-air, is used to infer the properties of the neutrino. To evaluate their experimental sensitivity, such experiments require a refractive index model for ray tracing radio-wave trajectories from a putative in-ice neutrino interaction point to the receiving antennas; this gives the degree of signal absorption or ray bending from source to receiver. The gradient in the density profile over the upper 200 meters of Antarctic ice, coupled with Fermat's least-time principle, implies ray "bending" and the existence of "forbidden" zones for predominantly horizontal signal propagation at shallow depths. After re-deriving the formulas describing such shadowing, we report on experimental results that, somewhat unexpectedly, demonstrate the existence of electromagnetic wave transport modes from nominally shadowed regions. The fact that this shadow-signal propagation is observed both at South Pole and the Ross Ice Shelf in Antarctica suggests that the effect may be a generic property of polar ice, with potentially important implications for experiments seeking to detect neutrinos.Comment: 33 pages, 14 figures, accepted for publication in JCA

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st
    corecore