1,688 research outputs found

    シェイクスピアとコロニアリズム

    Get PDF
    平成12年度第一回研究座談

    Iris Recognition: The Consequences of Image Compression

    Get PDF
    Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected

    Continued development of a detailed model of arc discharge dynamics

    Get PDF
    Using a previously developed set of codes (SEMC, CASCAD, ACORN), a parametric study was performed to quantify the parameters which describe the development of a single electron indicated avalanche into a negative tip streamer. The electron distribution function in Teflon is presented for values of the electric field in the range of four-hundred million volts/meter to four billon volts/meter. A formulation of the scattering parameters is developed which shows that the transport can be represented by three independent variables. The distribution of ionization sites is used to indicate an avalanche. The self consistent evolution of the avalanche is computed over the parameter range of scattering set

    The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    Get PDF
    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature

    Designing a Solid Waste Infrastructure Management Model for Integration into a National Infrastructure System-of Systems

    Get PDF
    Solid waste management is arguably one of the most important municipal services provided by government1. Given the rapid socio-economic changes that are projected to take place in the UK2 it is important that we plan our future waste management capacity to ensure the continuance of this valuable service. The Solid Waste Infrastructure Management System (SWIMS) model was designed to model the current solid waste infrastructure requirements (from collection through treatment and disposal) for an area based on its solid waste arisings. SWIMS allows an area’s waste treatment capacity requirements to be forecast against future socio-economic change to help decision-makers choose the right solid waste infrastructure given their goals, constraints and ideas about future conditions. The modelling of solid waste management systems has been carried out since the 1970s3 and such modelling exercises have been undertaken for numerous different geographical areas around the world4. However, the SWIMS model is unique in that it was designed to also operate within a larger national infrastructure system-of-systems model, including interdependencies with other infrastructure sectors including energy, water and waste water. To achieve such flexibility the SWIMS model was carefully designed using object-oriented programming (OOP) principles. In documenting this model’s design methodology we hope to demonstrate how applying OOP principles enables such models to not only be more flexible and more easily integrated with other modelling efforts, but also more easily understood by system experts and end-users

    Computerized system for translating a torch head

    Get PDF
    The system provides a constant travel speed along a contoured workpiece. It has a driven skate characterized by an elongated bed, with a pair of independently pivoted trucks connected to the bed for support. The trucks are mounted on a contoured track of arbitrary configuration in a mutually spaced relation. An axially extensible torch head manipulator arm is mounted on the bed of the carriage and projects perpendicular from the midportion. The torch head is mounted at its distal end. A real-time computerized control drive subsystem is used to advance the skate along the track of a variable rate for maintaining a constant speed for the torch head tip, and to position the torch axis relative to a preset angle to the workpiece

    ASTRALogy: Unrealistic Expectations?

    Get PDF
    Revascularization versus medical therapy for renal-arter
    corecore