270 research outputs found

    Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets

    Get PDF
    T-cell development is under the tight control of thymic microenvironments. Conversely, the integrity of thymic microenvironments depends on the physical presence of developing thymocytes, a phenomenon designated as 'thymic crosstalk'. We now show, using three types of immunodeficient mice, i.e. CD3(epsilon) transgenic mice, RAG(null) mice and RAG(null)-bone-marrow-transplanted CD3(epsilon) transgenic mice, that the control point in lymphoid development where triple negative (CD3(-),CD4(-),CD8(-)) thymocytes progress from CD44(+)CD25(-) towards CD44(-)CD25(+), influences the development of epithelial cells, critically inducing the extra, third dimension in the organization of the epithelial cells in the cortex. This tertiary configuration of the thymic epithelium is a typical feature for the thymus, enabling lymphostromal interaction during T-cell development. Crosstalk signals at this control point also induce the formation of thymic nurse cells. Moreover, our data indicate that establishment of a thymic cortex is a prerequisite for the development of the thymic medulla. Thus, differentiating thymocytes regulate the morphogenesis of thymic microenvironments in a stepwise fashion

    Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation

    Get PDF
    Hematopoietic stem cell transplantation (HSCT) requires conditioning treatments such as irradiation, which leads to a severely delayed recovery of T cell immunity and constitutes a major complication of this therapy. Currently, our understanding of the mechanisms regulating thymic recovery is limited. It is known that a subpopulation of bone marrow (BM)–derived thymic immigrant cells and the earliest intrathymic progenitors express the FMS-like tyrosine kinase 3 (Flt3) receptor; however, the functional significance of this expression in the thymus is not known. We used the BM transplant model to investigate the importance of Flt3 ligand (FL) for the regeneration of the T cell compartment. We show that FL is expressed in the adult mouse thymus on the surface of perivascular fibroblasts. These cells surround the proposed thymic entry site of Flt3 receptor–positive T cell progenitors. After irradiation, perivascular FL expression is up-regulated and results in an enhanced recovery of thymic cellularity. Thymic grafting experiments confirm an intrathymic requirement for FL. Collectively, these results show that thymic stromal cell–mediated FL–Flt3 receptor interactions are important in the reconstitution of thymopoiesis early after lethal irradiation and HSCT, and provide a functional relevance to the expression of the Flt3 receptor on intrathymic T cell progenitors

    Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data

    Get PDF
    Ten conceptually different models in predicting discharge from the artificial Chicken Creek catchment in North-East Germany were used for this study. Soil texture and topography data were given to the modellers, but discharge data was withheld. We compare the predictions with the measurements from the 6 ha catchment and discuss the conceptualization and parameterization of the models. The predictions vary in a wide range, e.g. with the predicted actual evapotranspiration ranging from 88 to 579 mm/y and the discharge from 19 to 346 mm/y. The predicted components of the hydrological cycle deviated systematically from the observations, which were not known to the modellers. Discharge was mainly predicted as subsurface discharge with little direct runoff. In reality, surface runoff was a major flow component despite the fairly coarse soil texture. The actual evapotranspiration (AET) and the ratio between actual and potential ET was systematically overestimated by nine of the ten models. None of the model simulations came even close to the observed water balance for the entire 3-year study period. The comparison indicates that the personal judgement of the modellers was a major source of the differences between the model results. The most important parameters to be presumed were the soil parameters and the initial soil-water content while plant parameterization had, in this particular case of sparse vegetation, only a minor influence on the results

    Evaluation of Electrochemotherapy with Bleomycin in the Treatment of Colorectal Hepatic Metastases in a Rat Model

    Get PDF
    Background: The available ablative procedures for the treatment of hepatic cancer have contraindications due to the heat-sink effect and the risk of thermal injuries. Electrochemotherapy (ECT) as a nonthermal approach may be utilized for the treatment of tumors adjacent to high-risk regions. We evaluated the effectiveness of ECT in a rat model. Methods: WAG/Rij rats were randomized to four groups and underwent ECT, reversible electroporation (rEP), or intravenous injection of bleomycin (BLM) eight days after subcapsular hepatic tumor implantation. The fourth group served as Sham. Tumor volume and oxygenation were measured before and five days after the treatment using ultrasound and photoacoustic imaging; thereafter, liver and tumor tissue were additionally analysed by histology and immunohistochemistry. Results: The ECT group showed a stronger reduction in tumor oxygenation compared to the rEP and BLM groups; moreover, ECTtreated tumors exhibited the lowest levels of hemoglobin concentration compared to the other groups. Histological analyses further revealed a significantly increased tumor necrosis of >85% and a reduced tumor vascularization in the ECT group compared to the rEP, BLM, and Sham groups. Conclusion: ECT is an effective approach for the treatment of hepatic tumors with necrosis rates >85% five days following treatment

    Identification of the Transgenic Integration Site in Immunodeficient tgε26 Human CD3ε Transgenic Mice

    Get PDF
    A strain of human CD3ε transgenic mice, tgε26, exhibits severe immunodeficiency associated with early arrest of T cell development. Complete loss of T cells is observed in homozygous tgε26 mice, but not in heterozygotes, suggesting that genomic disruption due to transgenic integration may contribute to the arrest of T cell development. Here we report the identification of the transgenic integration site in tgε26 mice. We found that multiple copies of the human CD3ε transgene are inserted between the Sstr5 and Metrn loci on chromosome 17, and that this is accompanied by duplication of the neighboring genomic region spanning 323 kb. However, none of the genes in this region were abrogated. These results suggest that the severe immunodeficiency seen in tgε26 mice is not due to gene disruption resulting from transgenic integration

    FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency

    Get PDF
    The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor’s transcriptional activity. FOXN1’s C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect

    Modeling the effect of age in T1-2 breast cancer using the SEER database

    Get PDF
    BACKGROUND: Modeling the relationship between age and mortality for breast cancer patients may have important prognostic and therapeutic implications. METHODS: Data from 9 registries of the Surveillance, Epidemiology, and End Results Program (SEER) of the United States were used. This study employed proportional hazards to model mortality in women with T1-2 breast cancers. The residuals of the model were used to examine the effect of age on mortality. This procedure was applied to node-negative (N0) and node-positive (N+) patients. All causes mortality and breast cancer specific mortality were evaluated. RESULTS: The relationship between age and mortality is biphasic. For both N0 and N+ patients among the T1-2 group, the analysis suggested two age components. One component is linear and corresponds to a natural increase of mortality with each year of age. The other component is quasi-quadratic and is centered around age 50. This component contributes to an increased risk of mortality as age increases beyond 50. It suggests a hormonally related process: the farther from menopause in either direction, the more prognosis is adversely influenced by the quasi-quadratic component. There is a complex relationship between hormone receptor status and other prognostic factors, like age. CONCLUSION: The present analysis confirms the findings of many epidemiological and clinical trials that the relationship between age and mortality is biphasic. Compared with older patients, young women experience an abnormally high risk of death. Among elderly patients, the risk of death from breast cancer does not decrease with increasing age. These facts are important in the discussion of options for adjuvant treatment with breast cancer patients

    Prognostic markers in cancer: the evolution of evidence from single studies to meta-analysis, and beyond

    Get PDF
    In oncology, prognostic markers are clinical measures used to help elicit an individual patient's risk of a future outcome, such as recurrence of disease after primary treatment. They thus facilitate individual treatment choice and aid in patient counselling. Evidence-based results regarding prognostic markers are therefore very important to both clinicians and their patients. However, there is increasing awareness that prognostic marker studies have been neglected in the drive to improve medical research. Large protocol-driven, prospective studies are the ideal, with appropriate statistical analysis and clear, unbiased reporting of the methods used and the results obtained. Unfortunately, published prognostic studies rarely meet such standards, and systematic reviews and meta-analyses are often only able to draw attention to the paucity of good-quality evidence. We discuss how better-quality prognostic marker evidence can evolve over time from initial exploratory studies, to large protocol-driven primary studies, and then to meta-analysis or even beyond, to large prospectively planned pooled analyses and to the initiation of tumour banks. We highlight articles that facilitate each stage of this process, and that promote current guidelines aimed at improving the design, analysis, and reporting of prognostic marker research. We also outline why collaborative, multi-centre, and multi-disciplinary teams should be an essential part of future studies

    Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens.

    Get PDF
    Expression of the Autoimmune regulator (AIRE) outside of the thymus has long been suggested in both humans and mice, but the cellular source in humans has remained undefined. Here we identify AIRE expression in human tonsils and extensively analyzed these "extra-thymic AIRE expressing cells" (eTACs) using combinations of flow cytometry, CyTOF and single cell RNA-sequencing. We identified AIRE+ cells as dendritic cells (DCs) with a mature and migratory phenotype including high levels of antigen presenting molecules and costimulatory molecules, and specific expression of CD127, CCR7, and PDL1. These cells also possessed the ability to stimulate and re-stimulate T cells and displayed reduced responses to toll-like receptor (TLR) agonists compared to conventional DCs. While expression of AIRE was enriched within CCR7+CD127+ DCs, single-cell RNA sequencing revealed expression of AIRE to be transient, rather than stable, and associated with the differentiation to a mature phenotype. The role of AIRE in central tolerance induction within the thymus is well-established, however our study shows that AIRE expression within the periphery is not associated with an enriched expression of tissue-restricted antigens (TRAs). This unexpected finding, suggestive of wider functions of AIRE, may provide an explanation for the non-autoimmune symptoms of APECED patients who lack functional AIRE.JF and HS were funded by project ERC-2013-ADG number 341038. MB was funded by EMBO ALTF 786-2013. BH was supported by the Netherlands Organization for Scientific Research (NWO) Veni program (91618032). LH, JpvH, and ST were supported by a grant from the Dutch Arthritis Foundation (2013_2_37). MM was supported by Wellcome Trust (grant105045/Z/14/Z). JM was supported by core funding from the European Molecular Biology Laboratory and from Cancer Research UK (award number 17197)
    • …
    corecore