313 research outputs found

    Fluid-membrane tethers: minimal surfaces and elastic boundary layers

    Full text link
    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.Comment: 12 page

    Effective Area-Elasticity and Tension of Micro-manipulated Membranes

    Full text link
    We evaluate the effective Hamiltonian governing, at the optically resolved scale, the elastic properties of micro-manipulated membranes. We identify floppy, entropic-tense and stretched-tense regimes, representing different behaviors of the effective area-elasticity of the membrane. The corresponding effective tension depends on the microscopic parameters (total area, bending rigidity) and on the optically visible area, which is controlled by the imposed external constraints. We successfully compare our predictions with recent data on micropipette experiments.Comment: To be published in Phys. Rev. Let

    Low energy neutrino astronomy with the large liquid scintillation detector LENA

    Get PDF
    The detection of low energy neutrinos in a large scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50kt scintillation detector is presented.Comment: Proccedings of the International School of Nuclear Physics, Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics, Erice (SICILY) 16 - 24 Sept. 200

    Discrete model analysis of the critical current density measurements in superconducting thin films by a single coil inductive method

    Full text link
    The critical current density of a superconducting film can be easily determined by an inductive and contactless method. Driving a sinusoidal current in a single coil placed in front of a superconducting sample, a non zero third harmonic voltage V_3 is induced in it when the sample goes beyond the Bean critical state. The onset of V_3 marks the value of current beyond which the sample response to the magnetic induction is no more linear. To take into account, in a realistic way, the magnetic coupling between the film and the coil we have developed a discrete model of the inducing and induced currents distribution. In the framework of this model the magnetic field profile on the sample surface and the coefficient linking the current flowing in the coil and the critical current density J_C of superconducting thin films is evaluated. The numerical results are checked measuring J_C of several thin films of YBa_2Cu_3O_(7-d) of known superconducting properties, used as a control material.Comment: to be published in Journal of Applied Physic

    Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    Full text link
    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom

    Detection potential for the diffuse supernova neutrino background in the large liquid-scintillator detector LENA

    Full text link
    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will provide high-grade background discrimination and enable the detection of diffuse supernova neutrinos (DSN) in an almost background-free energy window from ~10 to 25 MeV. Within ten years of exposure, it will be possible to derive significant constraints on both core-collapse supernova models and the supernova rate in the near universe up to redshifts z<2.Comment: 11 pages, 8 figures. accepted for publication in Phys. Rev. D. accepted for publication in Phys. Rev.

    Repressing Anarchy in Neutrino Mass Textures

    Get PDF
    The recent results that θ13\theta_{13} is relatively large, of the order of the previous upper bound, and the indications of a sizable deviation of θ23\theta_{23} from the maximal value are in agreement with the predictions of Anarchy in the lepton sector. The quark and charged lepton hierarchies can then be reproduced in a SU(5) GUT context by attributing non-vanishing U(1)FNU(1)_{FN} charges, different for each family, only to the SU(5) tenplet states. The fact that the observed mass hierarchies are stronger for up quarks than for down quarks and charged leptons supports this idea. As discussed in the past, in the flexible context of SU(5)U(1)FNSU(5)\otimes U(1)_{FN}, different patterns of charges can be adopted going from Anarchy to various types of hierarchy. We revisit this approach by also considering new models and we compare all versions to the present data. As a result we confirm that, by relaxing the extreme ansatz of equal U(1)FNU(1)_{FN} charges for all SU(5) pentaplets and singlets, better agreement with the data than for Anarchy is obtained without increasing the model complexity. We also present the distributions obtained in the different models for the Dirac CP-violating phase. Finally we discuss the relative merits of these simple models.Comment: v1: 12 pages, 3 figures; v2: 13 pages, 3 figures, text improved, matches version accepted for publication; v3: submitted to add an acknowledgment to a networ

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    The see-saw mechanism: neutrino mixing, leptogenesis and lepton flavor violation

    Get PDF
    The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to reconstruct see-saw, a feature which we refer to as ``see-saw degeneracy''. Indirect tests of see-saw are leptogenesis and lepton flavor violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related. Variants of the see-saw mechanism like the type II or triplet see-saw are also discussed. In particular, we compare many general aspects regarding the dependence of LFV on low energy neutrino parameters in the extreme cases of a dominating conventional see-saw term or a dominating triplet term. For instance, the absence of mu -> e gamma or tau -> e gamma in the pure triplet case means that CP is conserved in neutrino oscillations. Scanning models, we also find that among the decays mu -> e gamma, tau -> e gamma and tau -> mu gamma the latter one has the largest branching ratio in (i) SO(10) type I see-saw models and in (ii) scenarios in which the triplet term dominates in the neutrino mass matrix.Comment: 26 pages, 7 figures. Expanded version of talk given at 10th Workshop In High Energy Physics Phenomenology (WHEPP 10), January 2008, Chennai, India. Typos corrected, comments and references adde
    corecore