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Abstract. The see-saw mechanism to generate small neutrino masses is reviewed. After
summarizing our current knowledge about the low energy neutrino mass matrix, we con-
sider reconstructing the see-saw mechanism. Indirect tests of see-saw are leptogenesis and
lepton flavour violation in supersymmetric scenarios, which together with neutrino mass
and mixing define the framework of see-saw phenomenology. Several examples are given,
both phenomenological and GUT-related.
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1. Introduction: The neutrino mass matrix

Non-trivial lepton mixing in the form of neutrino oscillations proves that neutrinos
are massive and that the Standard Model (SM) of elementary particles is incom-
plete. At low energy, all phenomenologies can be explained by the neutrino mass
matrix

mν = U mdiag
ν UT , (1)

where mdiag
ν = diag(m1,m2,m3) contains the individual neutrino masses. In the

basis in which the charged lepton mass matrix is real and diagonal, U is the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix. We will work in this
very basis throughout the text. The PMNS matrix can explicitly be parametrized
as

U =

⎛
⎝

c12 c13 s12 c13 s13 e−iδ

−s12 c23 − c12 s23 s13 eiδ c12 c23 − s12 s23 s13 eiδ s23 c13

s12 s23 − c12 c23 s13 eiδ −c12 s23 − s12 c23 s13 eiδ c23 c13

⎞
⎠ P , (2)

where P contains the Majorana phases. All in all, nine physical parameters are
present in mν . Neutrino physics deals with explaining and determining them. To
very good precision the angles θ12, θ23 and θ13 correspond to the mixing angles in
solar (and long-baseline reactor), atmospheric (and long-baseline accelerator) and
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short-baseline reactor neutrino experiments, respectively. The analyses of neutrino
experiments revealed the following best-fit values and 3σ ranges of the oscillation
parameters [1]:

Δm2
� ≡ m2

2 − m2
1 =

(
7.67+0.67

−0.61

) · 10−5 eV2, sin2 θ12 = 0.32+0.08
−0.06,

Δm2
A ≡ ∣∣m2

3 − m2
1

∣∣ =

{ (
2.46+0.47

−0.42

) · 10−3 eV2 for m2
3 > m2

1(
2.37+0.43

−0.46

) · 10−3 eV2 for m2
3 < m2

1

, (3)

sin2 θ23 = 0.45+0.20
−0.13, |Ue3|2 = 0+0.050

−0.000.

The overall scale of neutrino masses is not known, except for the upper limit of order
1 eV coming from direct mass search experiments and cosmology. The hierarchy of
the light neutrinos, at least between the two heaviest ones, is moderate.

The current data for the mixing angles can accurately be described by tri-
bimaximal mixing [2], i.e., sin2 θ12 = 1

3 , sin2 θ23 = 1
2 and sin2 θ13 = 0. Tri-

bimaximal mixing is a special case of μ–τ symmetry, which implies θ23 = −π/4
and θ13 = 0. The mass matrices for μ–τ symmetry and for tri-bimaximal mixing
are

(mν)μ–τ =

⎛
⎝

A B B
· D E
· · D

⎞
⎠ ,

(mν)TBM =

⎛
⎝

Ã B̃ B̃

· 1
2 (Ã + B̃ + D̃) 1

2 (Ã + B̃ − D̃)
· · 1

2 (Ã + B̃ + D̃)

⎞
⎠ , (4)

where the
(∼)

A ,
(∼)

B ,
(∼)

D ,E are functions of the neutrino masses, Majorana phases,
and in case of μ–τ symmetry, θ12.

Obviously, there are many models and ansätz for the neutrino mass matrix, sim-
ply due to the fact that many of the low energy parameters are currently unknown.
Future precision data will sort out many possibilities [3] and shed more light on the
flavour structure in the lepton sector.

2. The see-saw mechanism and its reconstruction:
The see-saw degeneracy

The most important question in this framework is about the origin of the neutrino
mass matrix. One possibility to accommodate mν is to introduce SM singlets which
can couple to the left-handed νL and the (up-type) Higgs doublet. Usually, these
singlets are right-handed neutrinos NRi, and the corresponding Lagrangian is

L =
1
2
N c

Ri(MR)ijNRj + Lα(YD)iαNRiΦ

=
1
2
N c

RMRNR + νLmDNR. (5)
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Here mD is the Dirac mass matrix expected to be related to the known SM masses,
and MR is a (symmetric) Majorana mass matrix. Integrating out the heavy NRi

(MR is not constrained by the electroweak scale because NRi are SM singlets) gives
the see-saw formula [4]

mν = −mDM−1
R mT

D. (6)

It is also known as the ‘conventional’, or Type I, see-saw formula. Taking the
neutrino mass scale as

√
Δm2

A and the scale of mD as v = 174 GeV gives MR � 1015

GeV. We will assume in what follows that the see-saw particles are very heavy.
The main ingredient of the see-saw mechanism is the vertex Lα (YD)iαNRiΦ.

Testing this vertex is obviously crucial for testing and reconstructing see-saw. In
this respect, note that the number of physical parameters in mD and MR is 18, six
of which are phases. Comparing this with the number of parameters in mν we see
that half of the see-saw parameters get lost when the heavy degrees of freedom are
integrated out. To put it in another way, we hardly know mν and we know neither
mD nor MR. Reconstructing the see-saw mechanism is therefore a formidable task
[5–7], even more so when one notes that the see-saw scale of MR � 1015 GeV is
11 orders of magnitude above the LHC centre-of-mass energy. Leaving aside for
now observables which indirectly depend on the see-saw parameters (see below),
we have two possibilities to facilitate the reconstruction: (i) making assumptions
about mD and/or MR and (ii) parametrize our ignorance.

(i) Making assumptions
The most simple semi-realistic example is to assume that mD is the up-quark

mass matrix. This can happen in SO(10) models with a 10 Higgs representation.
We can in this case use the see-saw formula to find MR = −mupm−1

ν mup and
diagonalize MR to obtain the heavy masses. Assuming that mD is diagonal, and
inserting tri-bimaximal mixing and no CP phases gives [8,9]

M1 � 3
2m2

u

m2
, M2 � 2m2

c

m3
, M3 � 1

3
m2

t

2m1
. (7)

The naive see-saw expectation m3 ∝ m2
t , m2 ∝ m2

c and m1 ∝ m2
u is completely

changed due to the large neutrino mixing. Note that M1 ∝ m2
u, M2 ∝ m2

c and
M3 ∝ m2

t , i.e., the hierarchy of the heavy neutrinos is the hierarchy of the up-
quarks squared. This is necessary, in particular, to ‘correct’ the strong up-quark
hierarchy into the very mild light neutrino hierarchy.

The simple picture presented changes already in the presence of CP phases [9].
Even more modification occurs in realistic SO(10) models. In table 1, taken from
ref. [10], predictions for the smallest neutrino mass of different SO(10) models,
which differ in their Higgs content and in their flavour structure, are given (see
also table 2, which is taken from ref. [11]). The value of M1 in the simple example
leading to eq. (7) was about 105 GeV, obviously very different from the values in
the table, which also differ a lot for the various models. The reason for this large
spread in seemingly similar models is connected to the next issue.

(ii) Parametrizing our ignorance: The see-saw degeneracy
The impossibility to make unambiguous statements about the see-saw parameters

becomes very obvious when we parametrize our ignorance. This can be done with
the so-called Casas–Ibarra parametrization [12]:
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Table 1. Higgs content, predicted mass M1 of the lightest right-handed neu-
trino and baryon asymmetry ηB in various SO(10) models. The prediction for
|Ue3| is also given (taken from [10] and slightly modified).

BPW GMN JLM DMM AB

Higgs 10, 16, 16, 45 10, 210, 126 10, 16, 16, 45 10, 210, 126, 120 10, 16, 16, 45
M1 (GeV) 1010 1013 3.77 · 1010 1013 5.4 · 108

ηB 12 · 10−10 sin 2φ 5 · 10−10 6.2 · 10−10 10−9 sin 2φ 2.6 · 10−10

|Ue3| ≤ 0.16 0.18 0.12 ÷ 0.15 0.06 ÷ 0.11 0.05

mD = i U

√
mdiag

ν R
√

MR. (8)

Here R is a complex and orthogonal matrix which contains the unknown see-saw
parameters. Usually the parametrization in eq. (8) is considered in the basis in
which MR is real and diagonal. In the already pretty ideal situation in which we
knew mν and MR, there would still be an infinite number of allowed Dirac mass
matrices. We will refer to this unpleasant feature as ‘see-saw degeneracy’. We can
parametrize the parametrization of our ignorance by writing R as

R = R12R13R23, (9)

where Rij is a rotation around the ij-axis with complex angle ωij = ρij + iσij , ρij

and σij being real. Actually, this parametrization does not include ‘reflections’ [12],
i.e., it should be multiplied by R̃ ≡ diag(±1,±1,±1) from the left, where R̃ contains
an odd number of minus signs. However, in many cases the implied additional forms
of R do not lead to different textures in mD and the parametrization in eq. (9) is
general enough.

3. See-saw at work: Lepton flavour violation and leptogenesis

We conclude from the above that reconstructing see-saw requires more than low en-
ergy neutrino physics. One observable which can in principle be used is the baryon
asymmetry of the universe. Lepton flavour violation (LFV) in supersymmetric sce-
narios can also depend on the see-saw parameters. Here we will focus on the rare
decays 	i → 	jγ, with 	3,2,1 = τ, μ, e.

3.1 Lepton flavour violation

LFV in supersymmetric see-saw scenarios allows decays like 	i → 	jγ, triggered
by off-diagonal entries in the slepton mass matrix m̃2

L. The branching ratios for
radiative decays of the charged leptons 	i = e, μ, τ are [13]

BR(	i → 	jγ) = BR(	i → 	j νν̄)
α3

G2
F m8

S

|(m̃2
L)ij |2 tan2 β , (10)
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where mS is a typical mass scale of SUSY particles. Current limits on the branching
ratios for 	i → 	jγ are BR(μ → eγ) ≤ 1.2 · 10−11, BR(τ → eγ) ≤ 1.1 · 10−7 and
BR(τ → μγ) ≤ 6.8 · 10−8. One expects to improve these bounds by two to three
orders of magnitude for BR(μ → eγ) and by one to two orders of magnitude for
the other branching ratios.

To satisfy the requirement that the LFV branching ratios BR(	i → 	jγ) be
below their experimental upper bounds, one typically assumes that m̃2

L and all
other slepton mass and trilinear coupling matrices are diagonal at the scale MX .
Such a situation occurs for instance in the CMSSM. Off-diagonal terms get induced
at low energy scales radiatively, which explains their smallness. In this case a
very good approximation for the typical SUSY mass appearing in eq. (10) is [14]
m8

S = 0.5m2
0m

2
1/2(m

2
0 + 0.6m2

1/2)
2, where m0 is the universal scalar mass and m1/2

is the universal gaugino mass at MX . The well-known result for the slepton mass
matrix entries is [13]

(m̃2
L)ij = − (3m2

0 + A2
0)

8π2v2
u

(mDLm†
D)ij , (11)

where

Lij = δij ln
MX

Mi
.

Here vu = v sin β and A0 is the universal trilinear coupling.
Inserting the Casas–Ibarra parametrization from eq. (8) in mDm†

D reveals that,
in general, in addition to the high energy parameters, LFV depends on all the
parameters in the light neutrino mass matrix, including the Majorana phases, all
three light neutrino masses and the mass ordering.

We stress here that
(
m̃2

L

)
ij

factorizes in a term containing SUSY parameters and
a term containing parameters of the Yukawa coupling matrix mD. Therefore, the
ratios of the branching ratios are independent of the SUSY parameters and contain
information only on the flavour structure. For instance,

BR(μ → eγ)
BR(τ → eγ)

� 1
BR(τ → e νν̄)

∣∣∣∣∣
(mDLm†

D)12
(mD Lm†

D)13

∣∣∣∣∣
2

. (12)

We will mostly consider these ratios of branching ratios from now on. Note that
LFV (and later on leptogenesis) should be evaluated on the basis in which the
heavy neutrino and the charged leptons are real and diagonal. If they are not
diagonal, then mD should be replaced by U†

� mDV ∗
R , where m� m†

� = U� (mdiag
� )2 U†

�

and V †
RMRV ∗

R .
One simple example is the following: suppose both mD and MR obey a 2–3

exchange symmetry:

mD =

⎛
⎝

a b b
d e f
d f e

⎞
⎠ and MR =

⎛
⎝

X Y Y
· Z W
· · Z

⎞
⎠ . (13)
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Obviously mν will be μ–τ symmetric, i.e., look like eq. (4), in this case. Ignoring
logarithmic corrections, one finds that (mDm†

D)21 = (mDm†
D)31 and consequently

BR(μ → eγ)/BR(τ → eγ) � 1/BR(τ → e νν̄) � 5.7. Up to the normalization
factor the branching ratios are equal, which is so-to-speak a consequence of the fact
that μ–τ symmetry makes here no difference between muon and tau flavour.

Recall the current limit of 1.2 · 10−11 on BR(μ → eγ), and an expected improve-
ment of two orders of magnitude on the limit of BR(τ → eγ) ≤ 1.1·10−7. Therefore,
in this example it follows that τ → eγ will not be observed in a foreseeable future.
The decay τ → μγ is not constrained.

Leaving this model-independent approach aside now, let us perform a GUT in-
spired estimate of the ratio of the branching ratios: suppose mD coincides with
the mass matrix of up-type quarks mup. In addition, we will follow [9] and as-
sume that the mismatch between the left-handed rotations diagonalizing the Dirac-
type neutrino mass matrix mD and the mass matrix of charged leptons m� is the
same as the mismatch of the left-handed rotations diagonalizing the up-type and
down-type quark matrices, i.e., is given by VCKM. This includes the special case
in which mD = mup is diagonal and m� is diagonalized by the CKM matrix.
This in turn occurs in a scenario leading to quark–lepton complementarity [15,16],
sometimes called QLC 1. In either realization of this possibility, heavy neutrino
masses very similar to the ones in eq. (7) will result. The overall result is that
mDm†

D � V †
CKM diag(m2

u,m2
c ,m

2
t )VCKM. Adopting the Wolfenstein parametriza-

tion of the CKM matrix and taking into account that the up-type quark masses
satisfy mu : mc : mt � λ8 : λ4 : 1, we find

BR(μ → eγ) ∝ A4
(
η2 + (1 − ρ)2

)
λ10, (14)

BR(τ → eγ) ∝ BR(τ → eνν̄)A2
(
η2 + (1 − ρ)2

)
λ6, (15)

BR(τ → μγ) ∝ BR(τ → μνν̄)A2λ4. (16)

The relative size of the branching ratios can very well be described by

BR(μ → eγ) : BR(τ → eγ) : BR(τ → μγ) � λ5 : λ2 : 1 . (17)

Here we have taken into account the normalization factors BR(τ → e νν̄) � BR(τ →
μ νν̄) ∼ λ. The relation in eq. (17) implies that if BR(μ → eγ) lies close to its
current upper limit, then both τ → eγ and τ → μγ decays are observable. To
give a feeling of the numerical values, we can use the parameters m0 = 100 GeV,
m1/2 = 600 GeV and A0 = 0, for which BR(μ → eγ) � 5 · 10−19 tan2 β.

Again, we can consider the situation in realistic SUSY SO(10) models. Recently,
a comparison of the predictions for LFV was performed in ref. [11]. Table 2 sum-
marizes the findings, where we have for convenience rewritten the numerical values
from [11] in terms of powers of λ. Note that only in one model μ → eγ is not the
rarest decay, and that the ratio of τ → eγ and τ → μγ is usually not too far away
from our naive estimate in eq. (17). In general the branching ratio for τ → μγ is the
largest. The prediction for μ → eγ in the models CM (roughly 8 · 10−19 tan2 β for
m0 = 100 GeV, m1/2 = 600 GeV and A0 = 0) and CY (roughly 2 · 10−19 tan2 β) is
very close to our naive estimate. The other models predict a sizably larger branch-
ing ratio, BR(μ → eγ) for DR is more than two orders of magnitude larger, whereas
model AB (GK) predict a branching ratio larger by five (six) orders of magnitude.
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Table 2. Higgs content, predicted mass M1 of the lightest right-handed neu-
trino, BR(μ → eγ) divided by tan2 β for m0 = 100 GeV, m1/2 = 600 GeV,
A0 = 0, and the ratio of BR(μ → eγ) : BR(τ → eγ) : BR(τ → μγ) in various
SUSY SO(10) models. The prediction for |Ue3| is also given (taken from [11]
and slightly modified).

AB CM CY DR GK Naive

Higgs 10, 16, 16, 45 10, 126 10, 126 10, 45 10, 120, 126 10

M1 (GeV) 4.5 · 108 1.1 · 107 2.4 · 1012 1.1 · 1010 6.7 · 1012 2.0 · 105

|Ue3| 0.05 0.11 0.05 0.05 0.02 –

BR(μ → eγ)

tan2 β
5 · 10−14 8 · 10−19 2 · 10−19 1 · 10−16 2 · 10−13 5 · 10−19

Ratio λ2 : λ3 : 1 λ7 : λ3 : 1 λ4 : λ3 : 1 λ5 : λ3 : 1 λ : λ : 1 λ5 : λ2 : 1

3.2 Leptogenesis

See-saw is connected to heavy particles, and heavy masses correspond in cosmology
to early times. The see-saw vertex of leptons, Higgs and heavy neutrinos shows up
here in the form of a decay of the heavy neutrinos [17]. The decay asymmetry is
then (for a recent review, see [18])

εα
i =

Γ(Ni → Φl̄α) − Γ(Ni → Φ†lα)
Γ(Ni → Φl̄) + Γ(Ni → Φ†l)

=
1

8πv2
u

1

(m†
DmD)ii

∑
j �=i

Im[(m†
D)iα(mD)αj(m

†
DmD)ij ]f(M2

j /M2
i ), (18)

where f(x) =
√

x( 2
1−x − ln(1+x

x )). We have indicated here that flavour effects
[19–24] might play a role, i.e., εα

i describes the decay of the heavy neutrino of
mass Mi into leptons of flavour α = e, μ, τ . In the case when the lowest-mass heavy
neutrino is much lighter than the other two, i.e., M1 	 M2,3, the lepton asymmetry
is dominated by the decay of this lightest neutrino and f(M2

j /M2
1 ) � −3M1/Mj .

We have omitted additional terms in εα
i which vanish when summed over flavours

and which are suppressed by an additional power of M1/Mj when neutrinos are
hierarchical. The sum over flavours reads

εi =
∑
α

Γ(Ni → Φl̄α) − Γ(Ni → Φ†lα)
Γ(Ni → Φl̄) + Γ(Ni → Φ†l)

≡ Γ(Ni → Φl̄) − Γ(Ni → Φ†l)
Γ(Ni → Φl̄) + Γ(Ni → Φ†l)

=
1

8πv2
u

1

(m†
DmD)ii

∑
j �=i

Im[(m†
DmD)2ij ]f(M2

j /M2
i ). (19)

The expressions we gave for the decay asymmetries are valid in the case of the
MSSM. Their flavour structure is however identical to the case of just the Standard
Model. Also important in leptogenesis are the effective mass parameters responsible
for the wash-out. We will not discuss this issue here and refer to [19,20,26] for
details. The final baryon asymmetry is
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YB �

⎧⎪⎪⎨
⎪⎪⎩

−0.01ε1η(m̃1) one-flavour,

− 12
37g∗

(
(εe

1 + εμ
1 )

(
417
589 (m̃e

1 + m̃μ
1 )

)
+ ετ

1

(
390
589 (m̃τ

1)
))

two-flavour,

− 12
37g∗

(
εe
1

(
151
179m̃e

1

)
+ εμ

1

(
344
537m̃μ

1

)
+ ετ

1

(
344
537 (m̃τ

1)
))

three-flavour.

(20)

Here g∗ = 228.75 and we gave the expressions valid in the case of one-, two- and
three-flavoured leptogenesis. The three-flavour case occurs for M1(1+tan2 β) ≤ 109

GeV, the one-flavour case for M1(1+ tan2 β) ≥ 1012 GeV, and the two-flavour case
applies in between. The quantity YB is defined as the number density of baryons
divided by the entropy density: YB = nB/s, which is related to ηB = nB/nγ via
ηB = 7.04YB. The measured value YB = (0.87 ± 0.03) · 10−10.

One interesting possible feature of leptogenesis is the connection of low energy
CP violation to the CP violation necessary for leptogenesis. Without flavour effects,
ε1 in eq. (19) is relevant. After inserting the Casas–Ibarra parametrization in ε1

it becomes clear that U , and therefore the low energy CP phases, do not show up
in the decay asymmetry [7,25]. Very frequently, however, specific models have a
connection between high and low energy CP violation, originating from relations
between mass matrix entries, zero textures, etc. There are countless examples for
this.

In general, reproducing the observed value of YB, and its sign, is rarely a prob-
lem in models, including SO(10) scenarios (see table 1). The naive GUT-inspired
framework leading to the heavy neutrino masses in eq. (7) and the ratio of branch-
ing ratios from eq. (17) can also lead to leptogenesis [9,16]. However, recall that
M1 is typically well below 106 GeV in eq. (7). Therefore, it lies below the minimal
mass value required for successful thermal leptogenesis (see below). Hence, tuning
via CP phases is necessary in order to make M1 and M2 quasi-degenerate and to
generate the baryon asymmetry via ‘resonant leptogenesis’.

The general situation in what regards the connection of low and high energy CP
violation slightly changes in case of flavoured leptogenesis [19–23]. This can be
understood by inserting the Casas–Ibarra parametrization in the expression for the
decay asymmetries εα

1 in eq. (18). Note that they contain individual terms (mD)αj

and (m†
D)1α. Consequently, terms in which U explicitly shows up are present in

εα
1 . Hence, if the low energy phases are non-trivial, they contribute to YB. Their

effect can however be partly cancelled by the high energy CP phases in the complex
orthogonal matrix R. In addition, flavoured leptogenesis works perfectly well when
the low energy phases vanish (α = β = δ = 0) [24]. Connecting low and high
energy CP violation is therefore similar, but not identical, to the case of unflavoured
leptogenesis: a certain amount of input/assumptions is necessary.

The other interesting question in the framework of leptogenesis regards the re-
quired values of light and heavy neutrino masses. Most of the results depend on
the wash-out and the Boltzmann equations, and we refer to [19,20,26] for details.
An important point is that there is an upper limit on |ε1| which decreases with the
light neutrino mass scale [27], a property not shared by |εα

1 |. Hence, there is an
upper limit on neutrino masses for unflavoured leptogenesis, but not for flavoured
leptogenesis. The upper limit on M1 is basically not affected by the presence of
flavour effects.
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3.3 Combining LFV and leptogenesis

One can try to combine now everything and try to understand the interplay of
neutrino mass and mixing, LFV and leptogenesis [5–7,28]. The following example
[28] shows that indeed interesting information on the flavour structure at high
energy can be obtained and that the see-saw degeneracy can partly be broken: let
us assume the SUSY parameters m0 = m1/2 = 250 GeV and A0 = −100 GeV.
They correspond to

BR(μ → eγ) � 9.1 · 10−9|(mDLm†
D)12|2 1

v4
u

tan2 β. (21)

Using the Casas–Ibarra parametrization implies that we can express (mDLm†
D)12 in

terms of the heavy neutrino masses, the light neutrino parameters and the complex
angles contained in R. The term proportional to M3 will be the leading one. It can
be found by setting M1 = M2 = m1 = 0 and, for simplicity, inserting tri-bimaximal
mixing:

(mDLm†
D)12 � −1

6
L3M3

√
m2 cos ω13 cos ω∗

13

×
(√

6ei(α−β)√m3 cos ω23 + 2
√

m2 sin ω23

)
sin ω∗

23. (22)

We have parametrized R here as R = R23R13R12. For a natural value of M3 = 1015

GeV it turns out that the branching ratio of μ → eγ is too large by at least
three orders of magnitude. We can get rid of the potentially dangerous terms
proportional to M3 by setting ω13 = π/2. If we would set ω23 = 0 then terms of
order |Ue3|m3L3M3 cos ω13 cos ω∗

13 can lead to dangerously large BR(μ → eγ). For
the value of ω13 = π/2 the matrix R simplifies to

R =

⎛
⎝

0 0 1
− sin ω cos ω 0
− cos ω − sin ω 0

⎞
⎠ with ω = ω12 + ω23 . (23)

There is only one free complex parameter, which can be written as ω = ρ+ iσ with
real ρ and σ. One can go on to study in this framework the constraints on ω from
leptogenesis and also the implications for LFV (see figure 1).

4. Summary

The neutrino mass matrix and its origin are an exciting field of research, with
overlap to many fields of (astro)particle physics, including SUSY phenomenology
and cosmology. The see-saw mechanism (or any one of its many variants) and its
challenging reconstruction represent the crucial link between these fields. Future
data will help us draw a clearer picture of the flavour structure in the lepton sector,
and if we are lucky we could test and reconstruct the see-saw. The hope is that
in the not too far future only a limited number of theories/scenarios survive which
are able to explain all observations.
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Figure 1. Phenomenology of the scenario defined by eq. (23). Shown are
the correlations between YB and the rate of μ → eγ and between YB and
BR(μ → eγ)/BR(τ → eγ).
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Leptons edited by M Lévy, J.-L. Basdevant, D Speiser, J Weyers, R Gastmans and
M Jacob (Plenum Press, New York, 1980) p. 687
M Gell-Mann, P Ramond and R Slansky, in Supergravity edited by P van Nieuwen-
huizen and D Z Freedman (North Holland, Amsterdam, 1979)
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