578 research outputs found

    Implementation of an efficient scheme for calculating nonlinear transfer from wave-wave interactions

    Get PDF
    Nonlinear transfer from wave-wave interactions is an important term in the action-balance equation governing the evolution of the surface-gravity-wave field. Computation of this term, however, has hitherto been so consuming of computer resources that its full representation has not been feasible in nonparametric two-dimensional computer models of this equation. This paper describes the implementation of a hybrid computational scheme, incorporating a simplification first proposed by Thacker into the EXACT-NL Boltzmann integration scheme of Hasselmann and Hasselmann. This hybrid scheme retains EXACT-NL's symmetry, precision, and two-stage structure, but, by transferring a spectrum-independent preintegration from the second stage to the first, dramatically accelerates the resulting second-stage computation, enabling a relatively efficient and precise determination of nonlinear transfer in two-dimensional wave models. Physically, this preintegration collects together in single hybrid interactions multiple interactions belonging to identical spectral-band quadruplets. Thus all possible interactions are represented, and these interactions are represented in a uniquely efficient manner consistent with the spectral representation. We compute the coefficients in the resulting second-stage hybrid sum by essentially sorting and pre-summing the coefficients generated by a piecewise-constant first-stage EXACT-NL computation, using a variant of EXACT-NL that replaces the gather-scatter operations with a simpler bin-assignment procedure and employs a somewhat simpler set of integration variables. By exploiting the natural scaling of the integrand and partially pre-summing prior to sorting, we are able to further improve the efficiency of this computation for the deep-water case and to refine its integration-grid resolution almost to convergence. In wave-model computations of nonlinear transfer, vectorization on the spatial grid points of the model and selective truncation of the hybrid sum potentially reduce the working computation time for a single model time step to well under one Cray Y-MP single-processor CPU second per hundred grid points, while preserving a remarkably faithful representation of the full transfer

    No evidence of skin infection with Chlamydia pneumoniae in patients with cutaneous T cell lymphoma

    Get PDF
    Recently, Chlamydia pneumoniae-specific DNA and antigens were reported in the skin of patients with Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphomas. In order to revalidate these data we analyzed skin sections of patients with MF for the expression of three different chlamydial antigens and C. pneumoniae DNA by immunohistochemistry and PCR according to previously described protocolls. Neither C. pneumoniae-specific DNA sequences nor antigens were detected in any of the skin biopses from 24 MF patients tested, suggesting that further studies are needed to establish any pathogenetic relevance of C. pneumoniae in MF

    PHID-Coleo - a database identification tool for wood-boring beetles in plant health interceptions: Poster

    Get PDF
    Recent examples for the introduction of wood-breeding beetles in Europe include the asian longhorn beetles Anoplophora spp. and Aromia bungii (red-necked longhorn beetle). These and other woodboring beetle species pose a high risk of economic damage to trees and wood products. Smaller beetles like the powderpost beetles from the families Bostrichidae and Lyctidae also have the potential for causing considerable damage. These are often not identified adequately during inspections of wood packaging materials, making it impossible to assess their risk for becoming invasive. This project will aim at closing that gap. Our project PHID-Coleo (= Plant Health Identification of Coleoptera) has the objective to develop new diagnostic tools for the identification of potentially invasive and economically important beetles that can be found in wood packaging materials. The identification methods include classical identification keys based on morphological characters as well as molecular methods based on DNA analysis by PCR (barcoding). The methods for species identification will be supplemented by molecular analyses of introduced populations to clarify within species variations. Such methods will make it possible to determine the taxonomic relationship of samples from different areas and to draw conclusions about the introduction pathways, resulting in more efficient monitoring of the invasive species and preventing their spread. PHID-Coleo will build a freely accessible database of relevant species which are potentially invasive.Recent examples for the introduction of wood-breeding beetles in Europe include the asian longhorn beetles Anoplophora spp. and Aromia bungii (red-necked longhorn beetle). These and other woodboring beetle species pose a high risk of economic damage to trees and wood products. Smaller beetles like the powderpost beetles from the families Bostrichidae and Lyctidae also have the potential for causing considerable damage. These are often not identified adequately during inspections of wood packaging materials, making it impossible to assess their risk for becoming invasive. This project will aim at closing that gap. Our project PHID-Coleo (= Plant Health Identification of Coleoptera) has the objective to develop new diagnostic tools for the identification of potentially invasive and economically important beetles that can be found in wood packaging materials. The identification methods include classical identification keys based on morphological characters as well as molecular methods based on DNA analysis by PCR (barcoding). The methods for species identification will be supplemented by molecular analyses of introduced populations to clarify within species variations. Such methods will make it possible to determine the taxonomic relationship of samples from different areas and to draw conclusions about the introduction pathways, resulting in more efficient monitoring of the invasive species and preventing their spread. PHID-Coleo will build a freely accessible database of relevant species which are potentially invasive

    A hybrid parametrical wave prediction model

    Get PDF
    The development of a numerical wave prediction model incorporating a parametrical wind-sea model and a characteristic swell model is described. The parametrical model is an extension of an earlier two-parameter model to the full five Jonswap spectral parameters. An application is presented in which the model is used to hindcast severe wave conditions in the North Sea as part of an engineering study to define long-term extreme wave statistics for the area. The limitations of the model and the needs for future research are discussed

    Differential approximation for Kelvin-wave turbulence

    Full text link
    I present a nonlinear differential equation model (DAM) for the spectrum of Kelvin waves on a thin vortex filament. This model preserves the original scaling of the six-wave kinetic equation, its direct and inverse cascade solutions, as well as the thermodynamic equilibrium spectra. Further, I extend DAM to include the effect of sound radiation by Kelvin waves. I show that, because of the phonon radiation, the turbulence spectrum ends at a maximum frequency ω∗∼(ϵ3cs20/κ16)1/13\omega^* \sim (\epsilon^3 c_s^{20} / \kappa^{16})^{1/13} where ϵ\epsilon is the total energy injection rate, csc_s is the speed of sound and κ\kappa is the quantum of circulation.Comment: Prepared of publication in JETP Letter

    Theory of synthetic aperture radar ocean imaging: A MARSEN view

    Get PDF
    This paper reviews basic synthetic aperture radar (SAR) theory of ocean wave imaging mechanisms, using both known work and recent experimental and theoretical results from the Marine Remote Sensing (MARSEN) Experiment. Several viewpoints that have contributed to the field are drawn together in a general analysis of the backscatter statistics of a moving sea surface. A common focus for different scattering models is provided by the mean image impulse response function, which is shown to be identical to the (spatially varying) frequency variance spectrum of the local complex reflectivity coefficient. From the analysis has emerged a more complete view of the SAR imaging phenomenon than has been previously available. A new, generalized imaging model is proposed

    Monte-Carlo simulation studies of the nonlinear imaging of a two dimensional surface wave field by a synthetic aperture radar

    No full text
    The imaging of ocean surface waves by synthetic aperture radar (SAR) is investigated using two-dimensional Monte-Carlo simulations. The properties of the SAR imaging mechanism for windseas and swell in the Bragg scattering regime are discussed as a function of a few governing non-dimensional parameters formed from a combination of SAR and ocean wave parameters. The parameter ranges may be classified into three regimes corresponding to linear and weakly nonlinear, medium nonlinear and strongly nonlinear imaging. The nonlinearities are induced by motion effects (velocity bunching, velocity spread and acceleration smearing), while the real aperture radar (RAR) tilt and hydrodynamic modulation processes are regarded as linear. In the strongly nonlinear imaging regime, the velocity bunching mechanism causes a rotation of the spectral peak towards the range direction and a stretching of the peak wavelength. In addition, the azimuthal resolution is degraded through the Doppler spreading arising from the different facet velocities within a SAR resolution cell. The imaging properties in this regime are largely governed by two non-dimensional parameters, the velocity bunching and velocity smearing parameter. The nonlinear imaging distortions are strongest for broad spectra (windseas) and are significantly weaker for narrow-band swell. In the linear and weakly nonlinear imaging regime, the superposition of the hydrodynamic and tilt cross-section modulation and the velocity bunching transfer function normally produces a rotation of the spectral peak towards the azimuthal direction. The interference characteristics of these different modulation mechanisms depends on the wave propagation direction and can lead to a significant distortion of the image. This is often seen in large differences in the image modulation depths of waves propagating parallel and anti-parallel to the flight direction

    The surface wave environment in the GATE B/C Scale - Phase III

    Get PDF
    The surface wave environment in the GATE B/C scale is described from wave measurements made from buoys and aircraft during Phase III (September 1974). Particular emphasis is given to the wave measurements made from the pitch-roll buoy deployed in the B-scale array from the ship Gilliss and a similar buoy deployed in the C-scale array from Quadra. Reduction of the pitch-roll buoy measurements provided estimates of the one-dimensional wave spectrum as well as of the mean direction and spread of wave energy as a function of frequency. The data clearly revealed the importance of external forcing on the wave climate in GATE. Most of the wave energy present in the GATE areas was found to be swell imported from the trade wind circulations of both hemispheres and from an intense extratropical cyclone which crossed the North Atlantic at high latitudes early in Phase III. Locally generated waves were clearly evident in the wave spectra, but their energy level way have been modulated significantly by the low-frequency swell. The GATE wave data set can provide a powerful test of contemporary numerical wave-prediction models. The present study defines the, attributes which are required of such models for meaningful application to the GATE needs
    • …
    corecore