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Nonlinear transfer from wave-wave interactions is an important term in the action-balance equa- 
tion governing the evolution of the surface-gravity-wave field. Computation of this term, however, 
ha•s hitherto been so consuming of computer resources that its full representation has not been 
feasible in nonparametric two-dimensional computer models of this equation. This paper describes 
the implementation of a hybrid computational scheme, incorporating a simplification first proposed 
by Tracker into the EXACT-NL Boltzmann integration scheme of ttasselmann and ttasselmann. 
This hybrid scheme retains EXACT-NL's symmetry, precision, and two-stage structure, but, by 
transferring a spectrum-independent preintegration from the second stage to the first, dramatically 
accelerates the resulting second-stage computation, enabling a relatively efficient and precise deter- 
mination of nonlinear transfer in two-dimensional wave models. Physically, this preintegration col- 
lects together in single hybrid interactions multiple interactions belonging to identical spectral-band 
quadruplets. Thus all possible interactions are represented, and these interactions are represented in 
a uniquely efficient manner consistent with the spectral representation. We compute the coefficients 
in the resulting second-stage hybrid sum by essentially sorting and pre-summing the coefficients gen- 
erated by a piecewise-constant first-stage EXACT-NL computation, using a variant of EXACT-NL 
that replaces the gather-scatter operations with a simpler bin-assignment procedure and employs a 
somewhat simpler set of integration variables. By exploiting the natural scaling of the integrand 
and partially pre-summing prior to sorting, we are able to further improve the efficiency of this 
computation for the deep-water case and to refine its integration-grid resolution almost to conver- 
gence. In wave-model computations of nonlinear transfer, vectorization on the spatial grid points of 
the model and selective truncation of the hybrid sum potentially reduce the working computation 
time for a single model time step to well under one Cray Y-MP single-processor CPU second per 
hundred grid points, while preserving a remarkably faithful representation of the full transfer. 

1. INTRODUCTION 

We begin by rationalizing the present study in terms of a 
broader program to parameterize the evolutionary dynamics 
of the surface-gravity-wave field by comparing detailed syn- 
optic observations of this evolution with the predictions of 
a fully nonlinear two-dimensional wave model [Snyder, Neu, 
Long, and de Voogt, 1990 (SNLdV)]. 

We base our description of the wave field on the local action 
spectral density (action spectrum) A(le, a•,t), a function of 
vector wave number/e, horizontal position a•, and time t. The 
evolution of A (the spectral evolution of the wave field) is 
governed by the action-balance equation [Hasselmann, 1968; 
HasseImann et al., 1973], which we summarize in the form 

OA 
=-P+I+N-D-B+... . (1) Ot 

P denotes propagation terms, I, atmospheric-input terms, N, 
nonlinear transfer from wave-wave interactions, D, dissipation 
from whitecapping, and B, dissipation from bottom friction. 
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The ternis on the right-hand side of (1) determine the time 
rate of chmlge of the action spectral density A. If we know how 
these terms depend upon A and upon other relevant observ- 
ables and are given an initial state A(k, •, 0), an appropriate 
set of boundary conditions, and a complete record of the ob- 
servables for t > 0, we caxt in principle use this equation to 
calculate A(k,a:,t) for all k, a: in some domain, and t > 0. 
The refraction and advection propagation terms defining P 
are known functions of the gradients of A with respect to k 
and a:. The nonlinear-transfer term N is a known third-order 

functional of A [Hassselmann, 1962]. The remaining terms, 
however, have been only partially parameterized. 

To investigate the parameterization of the remaining terms, 
SNLdV and co-workers are attemlSting to exploit the expec- 
tation that a sufficiently complete and precise record of the 
evolution of the action spectrum A and of those influences 
driving this evolution contains the information necessary to 
determine the parameterization of the important terms. One 
need only (1) acquire such a record and (2) use the integral 
predictions of equation (1) to discover which combination of 
unknown source terms faithfully reproduces this record. To 
accomplish item (1), these investigators have conducted two 
month-long high-density high-resolution synoptic field exper- 
iments in the Bight of Abaco, a semi-enclosed section of the 
Bahama Banks. To accomplish item (2), they will use the 
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adjoint procedure of Thacker and Long [1988] to optimize the 
fit between model prediction and observation, adjusting the 
coefficients in a systematic expansion of the unknown source 
terms [Snyder, Lawson, and Long, 1992]. 

The success of such an inverse-modeling effort, however, 
depends critically upon being able to incorporate a faithful 
representation of the nonlinear transfer N into the model and 
adjoint-model equations. This interaction is an important ele- 
ment in the dynamics of both fetch- and duration-limited and 
fully developed sea states [Hasselmann et al., 1973; Komen et 
al., 1984; Young et al., 1987]. Thus a faithful representation 
of this interaction is essential to parameterizing the remaining 
interactions from the integral predictions of (1). 

The difficulty here is a practical one. The five-dimensional 
numerical integration required to estimate nonlinear trans- 
fer is costly. While for single case studies this integral can 
in principle be estimated with arbitrary precision, the neces- 
sary investment of computer resources to make the very large 
number of nonlinear transfer estimates required by a fully 
nonlinear two-dimensional wave model has hitherto proved 
unacceptable. Present-day third-generation wave models such 
as WAM [Hasselmann et al., 1985; WAMDIG, 1988] rely on 
severely truncated and correspondingly imprecise representa- 
tions of this transfer to achieve acceptable run times. The 
necessity to transcend the limitations of such representations 
in order to carry out the repeated model computations of the 
SNLdV program, and to do so with acceptable precision and 
at acceptable cost, has provided the impetus for the present 
effort. 

The point of departure for this effort is the EXACT-NL 
Boltzmann-integral computation of Hasselmann and Hassel- 
mann [1981, 1985 (HH)], that exploits a variety of symmetries 
and integration strategies to streamline the computation of 
nonlinear transfer. The EXACT-NL computation occurs in 
two stages. The first spectrum-independent stage assumes an 
integration grid defined by the choice of integration variables 
and integration-grid resolution, ranges over the correspond- 
ing discrete quadruplet interactions defined by this grid, and 
saves the vector wave numbers and interaction strengths for 
each interaction. The second stage inputs an action spectrum 
defined on some spectral grid, ranges over the save file output 
by the first-stage computation, and weights and distributes 
the corresponding interactions into bins defined by the spec- 
tral grid. Note that with this scheme the integration-grid 
resolution determines both the precision of the second-stage 
computation and the time it takes to effect this computation. 

Our basic contention is that there is a redundancy implicit 
in EXACT-NL, resulting from the mismatch between the typ- 
ically high resolution of the integration grid, necessary for pre- 
cision, and the typically coarse resolution of the spectral grid 
employed in a wave model. By collapsing or pre-summing 
multiple interactions among wave components belonging to 
the same quadruplet of spectral bins, however, this redun- 
dancy can be removed, giving a second-stage computation 
whose precision is still determined by the higher resolution of 
the integration grid, but for which the smaller computation 
time is determined by the coarser resolution of the spectral 
grid. The more precise the overall computation, the greater 
the mismatch, and the more dramatic the relative reduction 
in the second-stage computation time. 

If, as described below, one assumes a piecewise-constant 
representation for the spectrum, this collapse is obvious. In 
this case, the spectral density is constant across each spec- 
tral bin; thus the spectral-product weighting for the multiple 

interactions is identical. This weighting can be factored out 
and its spectrum-independent coefficient (a sum of interaction 
strengths) pre-summed. 

If, on the other hand, one assumes a piecewise-linear repre- 
sentation for the spectnun (We here refer to the spectral repre- 
sentation implicit in the gather-scatter operations of EXACT- 
NL as "piecewise-linear", even though this representation is 
strictly piecewise-linear only along coordinate orthogonals.), 
this collapse is somewhat less obvious and may be consider- 
ably less dramatic, yielding a significantly longer final sum. 
Nonetheless, the improved precision of the spectral represen- 
tation and the expected resulting increase in the rate of con- 
vergence of the first-stage computation and reduction in the 
representational error of the second-stage nonlinear-transfer 
estimates suggest that this case bears further investigation. 

To clarify and extend the argument, we next introduce a for- 
mal statement of Thacker's [1982] simplification, focusing the 
discussion on the piecewise-constant case. This discussion is 
extended to the piecewise-linear case in Appendix A. An alter- 
native less-formal and less-representation-specific derivation 
of the hybrid integration scheme is presented in Appendix B. 

To effect a piecewise-constant spectral representation, we 
write the action spectral density A in the form 

= (2) 
i 

Similar representations apply to P, I, N, D, and B. Here 
we imagine h-space subdivided into multiple spectral bands 
Ri. The basis functions Gi(k) are defined by Gi(k) -= 1, for 
k interior to Ri, Gi(k) -- O, otherwise. These functions are 
orthogonal in the sense that 

aij --= /d2k GiGj = RitSij, (3) 
where t•ij is the Kronecker delta. Note that Ri denotes both 
the spectral b•d •d its area. A•(k, •, t) is a residuM cor- 
rection term. 

Minimization in a le•t squares sense of the residuM A • 
with respec• •o •he Ai gives 

1 d2kGiA=Ai and •// d2kGiA R=O, 
for i = 1,2,.... Ai is thus an arithmetic mean of A over 
the ith band of the spectral representation. Corresponding 
integrations over P, I, N, D, and B and over the residual 
correction terms pR, i R, N R, D R, and B R give similar re- 
suits. 

The evolution of the prognostic variables Ai(•e,t) is gov- 
erned by a set of coupled equations, obtained by multiplying 
the action-balance equation (1) by Gi(k)/Ri and integrating 
over k. We have 

OAt 
Ot 1 f d2 k Gi(OA = 

_ 1 /d2kG•(_p+I+N_D_B+...) Ri 

-- -Pt q- Ii q- Ni - Di - Bi q- '" , 

(4) 

for i = 1,2,.... We here consider only the nonlinear-transfer 
term Ni. Following HH, we write 
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N = fff d2kl d2k2 d2k3 
+ - - + - - 

w=(gktanhkH)« and wi=w(ki,H), 
and where the spectral product//is given by 

-(A(kl, a•, t) + A(k•, a•, t))A(ka, a•, t)A(k, a•, t). (6) 

or(k1, k2, k3, k) is an interaction coefficient determined by the 
dynamics of the nonlinear wave-wave interaction; the delta 
functions express momentum and energy conservation for this 
interaction. It follows that 

N, = •i d•k G,N = •i • Tok'AjAkA' + N•n' (7) 
where N//z is a residual correction to the triple sum determined 
by A n and the Ai. and where formally 

f f f f dkl d•k2 dak3 d2k4 
cr(•(kl + k2 -- •3 -- •4)(•(C01 + 0.)2 -- 0.)3 -- 0.)4 )JIijkl, (8) 

with Ilij•t(kl,k2,k3, k4) given by 

l•ijk, • {•i(•4)({•j(•l){•k(k2)({•/(•$) -[- {•1(•4)) 
-- ((•j(•l) -}- aj(•2))ak(k$){•/(•4)). 

Thus Ni is a trilinear function of the Ai, with coefficients 
Tiikt obtained from an extended Boltzmann-type integral of 
the form (5), with Hiikl substituted for the spectral product H 
and integrated over all four vector wave numbers. Note that 
(1) the Tijkl axe independent of the Ai and therefore need 
be calculated only once and (2) because the delta-function 
factors expressing momentum and energy conservation and 
the factor Hiikt appearing in the integrand of (8) axe only 
rarely simultaneously different from zero, the coefficients Tijkt 
are mostly zero. 

There are two sources of error inherent in relation (7), the 
integration error in the estimates for the coefficients 
resulting from the finite resolution of the integration grid em- 
ployed to estimate (8), and the representational error N•, 
estimated by propagating the residual correction A i• through 
the scalar product operation (7), with N given by (5), H by 
(6), and A by (2). These errors will be discussed in more 
detail in section 4. 

Consider the set of all coefficients Tijkt in the sum (7). Let 
all nonvanishing coefficients from this set be ordered in some 
fashion and let n be an index that runs over this subset. Then 

the sum (7) may be rewritten in the form 

1 

Ni = • • T. • i,•A•A•At• + Ni n. (9) 
where T• is the nth such coefficient and in, j,, k,, and I, 
are the spectral indices of this coefficient. The sum (9) and a 
related spectral-product version of this sum are more rapidly 
evaluated on the computer than is the sum (7). 

The extended integral (8) provides a formal recipe for the 
hybrid coefficients Tij•t. To use this recipe to estimate these 
coefficients, one by one, however, would prove an exceedingly 

tedious enterprise. In fact, we obtain the full set of coeffi- 
cients in the equivalent of a single integration by replacing 
the piecewise-lineax spectral representation of the EXACT- 
NL computation with a piecewise-constant spectral represen- 
tation. Each integration-grid point then determines a quadru- 
plet of hybrid interaction indices ijkl and assigns a nonvan- 
ishing Riemann-sum increment (the EXACT-NL coefficient) 
to the corresponding hybrid coefficient Ti•. By sorting the 
quadruplet indices and pre-summing the corresponding coef- 
ficient increments, we obtain the full set of unique quadruplet 
indices i,j,k,1, and hybrid coefficients T, required by (9). 

We emphasize that implementation of the hybrid technique 
involves two distinct steps analogous to the two stages of the 
EXACT-NL computation: (1) the one-time computation of 
the coefficients T, and (2) given these coefficients, the re- 
peated evaluation in a wave-model setting of the sum (9). 
Both steps pose serious computational difficulties. Because 
the first computation is a five-dimensional integral, doubling 
the resolution of the integration grid multiplies both the run 
time and the number of EXACT-NL coefficients to be sorted 

and pre-summed by a factor of 2 •. Increasing this resolution 
rapidly leads to prohibitive run times and excessive storage 
demands. Similarly, the many nonlinear-transfer computa- 
tions called for in the running of a wave model or even more 
so in the parameter-optimization phase of the SNLdV pro- 
gram make it necessary to evaluate the sum (9) itself in as 
efficient a manner as possible. 

We continue the discussion in section 2 by reviewing briefly 
the EXACT-NL computation of nonlinear transfer. In sec- 
tion 3, we develop a corresponding description of the hybrid 
integration scheme. We then discuss, in sections 4 and 5, our 
approach to dealing with the computational difficulties posed 
above. In section 4, we discuss the errors of the hybrid compu- 
tation, in particular the convergence of the estimated transfer 
with increasing integration-grid resolution. In section 5, we 
discuss the effect of some initial truncations of the sum (9) on 
precision and on second-stage computation time. Finally, in 
section 6, we summarize the conclusions of the investigation. 

Appendix A shows h{)w the hybrid scheme can be extended 
to a piecewise-linear representation of the action spectrum, 
using the projection formalism, and Appendix B presents an 
alternative derivation of the hybrid scheme that is indepen- 
dent of this formalism. 

An extended version of this manuscript, with further com- 
putational details, is available as a technical report [Snyder et 
al., 1992]. 

2. EXACT-NL COMPUTATION OF NONLINEAR TRANSFER 

Since the original derivation of the norlinear energy trans- 
fer from resonant quadruplet wave-wave interactions [Ha.•- 
selmahr,, 1962], considerable effort has been devoted to the 
question of how best to compute the Boltzmam• transfer inte- 
gral (5) [Hasselmann, 1963; Sell and Hasselmann, 1972; Webb, 
1978; Masuda, 1981]. Most early integration techniques are 
based on a straightforward discretization of the integral on 
the same grid used to discretize the wave spectrum. 

The more recent EXACT-NL integration technique of HH 
bases this discretization on a separate five-dimensionM in- 
tegration space. This technique also efficiently exploits the 
principle of detailed balance and other inherent symmetries 
of the Boltzmann integral, as well as the conservation of en- 
ergy, momentum, and action. Finally, it decouples the choices 
of spectral grid and integration grid, which can be speci- 
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fled more or less independently, and (imperfectly) decouples 
the computation of the non-spectrum-dependent part of the 
integrand, which need be made only once, from the com- 
putation of the spectrum-dependent part of this integrand. 
Thus the integration g•qd can be designed with variable res- 
olution to achieve maximal resolution in the sensitive region 
near the center of the "figure-of-eight" interaction diagram 
(kl = k2 = ka = k4), wtfile the spectral grid can be indepen- 
dently chosen to yield maximal resolution near the similarly 
sensitive spectral-peak region. 

The elements of the EXACT-NL computation, discussed in 
terms of the projection formalism introduced in the previous 
section, are the following: 

1. The principle of detailed balance. According to this 
principle, the integrand of (5) provides not only an estimate of 
the differential transfer of action to the k component resulting 
from its interaction with the kl, k2, and ka components, but 
also of the corresponding (and equal) differential transfer to 
the ks component and from the kl and k2 components. As 
a practical expression of this principle, the nonsymmetric six- 
dimensional integral (5) may be rewritten as the symmetric 
eight-dimensional integral 

1 ffff,k c[2k2 d2k3 d2k4 N=• 
•(• + •. - • - •)•(•1 +• -• - •).•, (10) 

where the interaction coefficient cr and spectral product H are 
defined as before, with k4 substituted for k, and where 

•(• - •) + •(• - •) - •(• - •) - •(• - •1). (•) 

2. Piecewise-linear representation of A and N. Implicit in 
the HH formulation are the expansions 

A - Z Ai(•'t)G•i(l•) and • Ni(•,t)G•i(l•), (12) 
i i 

where, analogous to (2), the overlapping basis functions 
again vanish outside small subregions of/•-space (containing 
the subregion Ri defined for the piecewise-constant case and 
portions of the adjacent Rj), are again equal to unity at the 
center point/•i of Ri, but in this case decrease linearly to zero 
at the center points of the adjacent Rj. For simplicity, we 
ignore the complications inherent in the residual corrections 
A R and N R, as we will throughout this section and through- 
out section 3. These expansions provide the rationale for the 
gather-scatter operations by which the spectral product is lin- 
early interpolated within the integrand and by which the re- 
suiting nonlinear-transfer increments are similarly distributed 
among the output bins. Note that the piecewise-linear basis 
is nonorthogonal and that Ni is given by 

N• = • • aq I d•kl d•k• d•k• d•'k4 
•6(•1 + •. - • - m•)6(•1 + •. -• - •),•n, (x•) 

where 27 is interpolated from (6) and (12), where [c• 1] is the 
inverse matrix to the (nondiagonal) scalar-product matrix 

[aji] -- [ f d2k GjGi], (14) 
and where 

In fact the scatter operation employed by HH to distribute 
the nonlinear-transfer increments among the output bins in 
effect substitutes for (14) the simpler scalar-product matrix 

associated with the piecewise-constant representation (2), giv- 
ing 

1 //ff d•.k 1 d•.k•. d•.k a d2k4 
•(•1 + •. - • - •)•(•1 + •. - • - •)•,n. (16) 

The relationship between the algorithms (13) and (16) is dis- 
cussed in Appendix A. 

3. Transformation of the variables of integration. To elim- 
inate the delta functions from (16), HH introduce the coordi- 
nate transformation 

where 

• ----CO 1 

t.O s -- ta; 1 -{- 0d 2 -- 0d 3 -- 0d 4 , 
(17) 

Integration over w, and k• removes the delta functions and 
reduces the eight-dimensional integral expression (16) to an 
integral over the five-dimensional space of the remaining vari- 
ables. A further transformation replaces these remaining in- 
tegration variables with the variables 01, 03, •, /C, and •, 
where 

• -= I•1- I•1 + •. I- I • + •1, 
• ---- arg(•) ---- arg(/el q-/e2) -- arg(/ea 
•i -- arg(ki)-- •, for i = 1,2,3,4, 

(18) 

4. Exchange symmetries. Because the full integrand of (16) 
is invariant with respect to the exchanges kl •-• k2, ks •-• k4, 
and (kl, k2) • (ks, k4), •d because t•s integrand, except 
for the product •fiH, is inv•ant to the change of sign 
-•1 •d •s • -0s, the restting integral need only be per- 
fo•ed over a subspace of the inte•ation •ables (18). We 
have 

Ja d• (.ill + .THr), (19) 

where the superscript T denotes the transformation resulting 
&om tMs change of sign, and where J is a JacobJan. &0(•, H) 
is defined by 

•0 • •(•, •), (•0) 

•0 •0 for •o 
(•1) 

and •0• for 

with the resonance frequency d;•(/c, H) and frequency angle 
O(/c, &, H) defined by 
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fc H) and • -• arccos(•rr )' (22) = x0(, 
with 

Here k(co, H) is the inverse to co(k, H). 
5. Discretization of the integral. Formation of the Rie- 

mann-sum approximant to the integral (19) yields an expres- 
sion of the form 

N 

2 T T 
= + ), 

where 

(24) 

munity has been seeking more efficient approximations or rep- 
resentations of this integral. 

The present hybrid computation incorporates the proposed 
simplification by Thacker [1982] into EXACT-NL, combining 
elements of both developments. Consistent with EXACT-NL 
and the discrete-interaction approximation, this computation 
exploits the principle of detailed balance, exchange symme- 
try, and rotational symmetry. Consistent with Tracker, it 
employs a piecewise-constant basis and pre-sums coefficients. 
To simplify the investigation of the convergence of the compu- 
tation, only one of the integration variables is stretched and 
differently from EXACT-NL. Consistent with the piecewise- 
constant representation of the spectrum, the gather-scatter 
operations are replaced by a simpler nearest-neighbor bin- 
assignment procedure. 

Expanding A and N in a piecewise-constant basis Gi(/½) as 
in (2), multiplying (10) by Gi(k)/Ri and integrating over k, 
we obtain 

The sum runs over a finite set of N integration grid points in 
the five-dimensional space of the integrand. k•,, k2n, /•3n, 
and k4, are the values of k•, k2, ks, and k4 defined by the 
nth grid point. k•,, k2•,, k[,, and k4•, are the transformed 
values defined by this point. • The EXACT-NL coefficient E, is 
the corresponding product of a, J, and the volume increment 
associated with (centered on) this point. #i, and #•'• are 
evaluated from the piecewise-linear basis. //, and H• T are 
similarly interpolated from the values of the action spectral 
density at the spectral grid points (cf. equations (6) and (12)). 

6. Rotational symmetry. Because the interaction coefficient 
a and the Jacobian J are independent of 0, these terms can be 
placed outside the inner integral in (19)), so that the Riemann 
approximant to the integral (23) becomes a pair of nested 
sulns 

NIP p 
2 T T 

n p 

(25) 

where the inner sum corresponds to the inner integral over 0, 
and P denotes the number of angle increments in this inner 
sum. In this context, E, denotes a reduced set of nonredun- 
dant •-independent EXACT-NL coefficients, and the double 
index is necessary in the inner sum to reference a particular 
integration grid point. In accordance with (25), HH com- 
pute the nonlinear transfer in two separate steps, first com- 
puting the reduced set of coefficients En (computer program 
INTKOEF), then computing the Riemann sum (25), using 
this set and an input spectrum as inputs (computer program 
INTFIL). 

7. Stretched in•tegrati? variables. HH replace the integra- 
tion variables &, 0•, and 0a with a set of stretched integration 
variables that concentrate integration grid points in important 
regions of the integrand. 

8. Truncation. Finally HH truncate (filter) the sum (25) 
by eliminating integration grid points for which the integrand 
fails below some critical level for a typical model spectrum. 

3. THE HYBRID INTEGRATION SCHEME 

Ni = •ii d2kl d2k2 d2ka d•k4 
(26) 

where as in (15), 

#i(k•,k2, ka, k4) - Gi(k4)+Gi(ka)-Gi(k2)-Gi(kl), (27) 

except that in this case the Gi(k) are piecewise-constant ba- 
sis functions. Transformation of the variables of integration 
yields 

(28) 

which is identical in form to (19). 
Discretization of the integral (28) is complicated by the dis- 

continuous character of the products pilI and ' TIIT There /•i ^' 
are two sets of variables, the integration variables k, &, •1, 
t•s, and • and the interaction variables kl, 01, k2, 02, k3, 03, 
k4, and 04. The spectral grid defines a set of constant bound- 
ary values that subdivide the two-dimensional space of each 
pair of interaction variables into spectral bins. These bound- 
ary values in turn define an eight-fold family of intersecting 
hypersurfaces cutting the five-dimensional space of the inte- 
gration variables and subdividing this space into cells inside of 
which each of the eight interaction variables lies between two 
adjacent boundary values for that variable. Within each such 
cell the vector wave numbers kl, k2, k3, and k4 are confined 
to single spectral bins. Let ql, q2, q3, and q4 be the spectral 
indices corresponding to these four bins, and let 

[ql] q __ q2 
qa 

q4 

Despite its substantial economies, the EXACT-NL compu- 
tation of nonlinear transfer is still too consuming of computer 
resources to employ on a routine basis in a two-dimensional 
wave model. Recognizing this fact, the wave-modeling corn- 

be a vector index specifying these four spectral indices. Then 
a unique vector index characterizes (labels) each cell. Fur- 
thermore, within a given cell the variables Pi and H are inde- 
pendent of the integration variables and are given by 
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(29) 

17 = 17q -- Aq•Aq2(Aq• + Aq4 ) - (Aq• + A•2)A•A•4. 

Similarly, the five-dimensional space of the integration vari- 
ables may be subdivided into a second transformed set of cells 
within which the wave vectors /•l T, /•2 T, /%T, and/•4 T are con- 
fined to single bins. If ql T, q2 T, q3 T, and q4 T are the spectral 
indices corresponding to these bins (vector index qT), then 
within each transformed cell 

(30) 

17T = ilqT = Aq•Aq•(Aq• + Aqy)- (Aq• + Aq•)Aq•Aq4•. 

We next form the Riemann-sum approximant to (28) 

N 
2 

where, as in (23), the •n •e a no•educed set of rededant 
EXACT-NL coefficients, •d where q• and q• are the vec- 
tor indices defined by the nth integration grid point. The 
volume increments contributing to the E• •e detersned by 
the inte•ation grid and define still a t•rd subdivision of the 
five-•mensional space of the integration variables. This sub- 
division cont•ns two categories of volume increments, those 
for w•ch the vector in•ces q •d qT are constant t•ough- 
out the increment (increment totally confined within a s•gle 
vector-index cell and witch a single tr•sformed vector-•dex 
cell) and those for which these indices are not constant (in- 
crement intersected by one or more bound•y or transformed- 
boundary hyperspaces). We note that this distinction is 
ultimately u•mport•t in the h•t, where the proportion of 
volme increments of the second type goes to zero, but it may 
be importer in obtMning • acceptable nmnericM approxi- 
mation to t•s li•t. 

We now a•ve at the m•n point of the •gument: typi- 
cally, m•y volme increments contributing to the Riemann 
approximant to (28) •e labelled by the sine untr•sformed 
vector index q and m•y increments by the sine transformed 
vector index qT, allowing us to pre-sm the contributions of 
these increments. We first illustrate t•s point for the simple 
Riem•n sm (31). Consider M1 untransformed and trans- 
formed vector-index cells containing at least one integration 
grid point. Suppose there are M such cells. Let these cells be 
numbered in some fashion, and let q• be the vector index of 
the ruth cell. Then (31) is of the fore 

where 

Drn • 

or Dm= 

M 

N 

E E,, for untransformed cells, 

N 

• En, for transformed cells. 
q•--qm 

(32) 

(33) 

In this form, our approxima•t exploits the principle of detailed 

balance, exchange symmetw, and the Thacker simplification, 
but it does not yet exploit rotational symmetry. 

To exploit this symmetry, we again express the Riemann 
approximant (31) as a multiple sum (as in (25)). In this case, 
however, the inner integral over • becomes itself a pair of 
nested sums. As before, let p be an index ranging over the 
P uniform increments of t•, and assume that P is an integral 
multiple of the number $ of uniform angle bins in the spectral 
grid. Then we may write p in the form 

p = (s - 1)R + r, (34) 

with r = 1,2,-.. ,R and s = 1,2,..- ,S, where R - P/S. 
This relation subdivides the P indices p into $ groups of 
length R. The sum (31) becomes 

where as in (25) the E,• are a reduced set of nonredundant 
EXACT-NL coefficients, and where q•r, and a" q,,r, are the vec- 
tor indices of the nrsth integration grid point. Rewriting (35) 
in the form 

N/a/S a S 
2 

X i ---- I•---•' Z Z an Z(/-liq,,.,17qn,., q- 

and recombining the indices n and r to form a new index n, 
we obtain 

N/S S 

where in this context the E,, are a partially reduced set of 
somewhat-redundant EXACT-NL coefficients, and where 
and q,, are the vector indices of the nsth integration grid 
point. 

We note that because 

and oiT=t•--Oi for i=1,2,3,4, 

a given change in 0 produces an identical change in all eight 
(four untransformed and four transformed) interaction angles. 
In particular, if t• changes by one spectral-angle increment, 
then so do the 0i and the t9i •. It follows that if the index 
s increments by one, each component of the vector indices 
q,• and q•T, also essentially increment by one. More explic- 
itly, if we assume that the spectral bands are centered on the 
intersections of the orthogonals 

k = kt -- n t ko, t=l,2,-.-,T 

2•r(s _ • and 0-0•=-•- •), s=1,2,...,S, 

where n and k0 are constants, and further assume that these 
bands are ordered by the algorithm 

i = it• --- (t- 1)$ + s, 

then the change in each component of the vector indices 
and q• is 1 or 1- S (if the component index is an integral 
multiple of S). Thus 
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q.•+• q.• + •(q.• ) and •r •r •(qL), -- qns+ • = qns 

where 

and 

e(q)• e(qa) 

(37) 

e(q) ---- 1 - S, if q is an integral multiple of S, 
e(q) =- 1, otherwise. 

To complete the arg•unent, we note that for given ,, there 
are generally many grid points ns that are characterized by 
the same untransformed vector index q and many grid points 
that are characterized by the same transformed vector index 
qT. Moreover, if qn•s -- q,•8 for some (nl, n2, and) s, then 
qm • = qn• for all s. Similarly, if qnT• • T -- qn•s for some s, then 
q,T• = q•T•, for all s It follows that if for some s a subgroup $ ß 

of indices n defines a subgroup of integration grid points ns 
q,8) is constant, then, for for which the vector index qn, (or T 

every s, this same subgroup of indices defines a subgroup of 
integration grid points for which the index is constant. Fur- 
themore, both the total number M/S of such subgroups and 
the sum over the ruth subgroup (vector index qm,), 

Jv/s 

n 

qnz'-'qmz 

N/$ 

n 

qns--qmz 

E,, for untransformed subgroups, 

for transformed subgroups, 

Dm • 

D m _• 

are independent of s. Thus (36) becomes simply 

2 M/S S 

The sm (38) involves essenti•y the same number of op- 
erations • the sm (32), but the input coefficients D• are 
1IS times as nmerous. Indeed, the •ay of coefficients D• 
is t•icMly of s•ciently smM1 &mension that it. may reside 
pemanently in core duhng the m•ing of the wave model. 
A second set of core-resident index •ays defines the vector 
indices q•, for s = 1. For, • 1 these indices •e computed 
from (37). Extend•g the r•ge of the •lar dependence of 
both the Ai •d the Ni to 4• reduces this latter computation 
to a literM "increment by one" Mgoht•. Prior to su•a- 
tion, both fu• circle ranges of the Ni •e set to zero. After 
smmation, the conthbutions to both r•ges •e co•ected in 
a s•gle r•ge. 

It is of interest to fomMly comp•e t•s sm or the rome- 
what simpler version of this sum (32) with the sm (9). We 
note first that substitution of (29) into (32) breaks this sum 
up into a pfi•tive sin, each term of which is the product of 
a coefficient 2Dm/Ri, a Kronecker delta, •d a triple prod- 
uct of prognostic v•ables. It is cle• that this sm is in fact 
identicM to the sm (9), each term of w•ch is the product of 
a coefficient T,/Ri, a Kronecker delta, and a triple product of 
prognostic vahables. Therefore, the D• and the T, must be 
derivable from one •other. Indeed each m de•es multiple 
coefficients Tn = •2D•, whose interaction indices •e v•ous 
pemutations of the components of qm. 

We have derived (32) by considering the Boltzm• integral 
•d adopting the simplifications of HH (principle of det•led 

balance, exchange symmetry) before applying the Thacker 
simplification (pre-summing). Alternate paths to this result 
axe (1) to first apply this simplification, obtaining (9), then 
to invoke the principle of detailed balance and exchange sym- 
metry to obtain a series of relations between the resulting 
coefficients, leading to (a2), or (2) to begin with the principle 
of detailed balance, obtaining (10), then to apply the Thacker 
simplification, giving an expanded version of (9), and finally 
to invoke exchange symmetry, leading to (32). All paths lead 
to the same result and, after invoking rotational symmetry, 
to the same extension of this result (38). The path chosen 
has the additional advm•tage that it not only yields a formal 
result but also defines a practical procedure for determining 
the hybrid coefficients necessary to numerically estimate this 
result. 

4. ERRORS OF THE HYBRID COMPUTATION 

Published estimates of the angle-integrated action transfer 
for a fetch-limited wind sea typically exhibit a characterisitic 
(+ - +) signature, with (1)large positive transfer at fre- 
quencies below the spectral peak, (2) relatively large nega- 
tive transfer across a broad central band of frequencies, and 
(3) modest positive transfer at high frequencies, decreasing to 
zero at very high frequencies. The transition between items 
(1) and (2) is typically very sharp. Superimposed on this char- 
acterisitic pattern is often a fine structure, particularly visible 
in the central negative band, that in some cases is clearly nu- 
merical, but may also be partly real. 

How much of this fine structure is real? What integration- 
grid resolution is necessary to eliminate its numerical compo- 
nent? How significant are the errors introduced by the choice 
of spectral representation? Can one obtain sufficiently stable 
estimates for the coefficients D,, and for the resulting nordin- 
ear transfer to allow a meaningful parameterization of other 
source terms in the action-balance equation in the manner 
proposed by SNLdV? These are the underlying questions that 
we address in this section. In section 5 we address the further 

important question: can we in fact compute the second-stage 
sum (38) rapidly enough to make this parameterization prac- 
tical? 

As previously noted in section 1, there are two sources of 
error in the hybrid estimates for the prognostic variables Ni: 
the integration error in the hybrid coefficients resulting from 
the finite resolution of the integration grid and the represen- 
tational error N/R resulting from the inexact representation 
of the action spectrum A as a linear superposition of finite- 
resolution piecewise-constant (or piecewise-linear) basis func- 
tions. 

The integration error is determined primarily by the in- 
tegration-grid resolution relative to the spectral resolution 
(more precisely, by the size of the integration volume incre- 
ments relative to the size of the vector-index cells defined in 

section 3) and secondarily by the spectral resolution, choice 
of spectral representation, and choice of integration variables. 
This error converges toward zero as the integration-grid res- 
olution increases relative to the spectral resolution, but the 
rate of convergence and the size of the unconverged error de- 
pend upon these secondary factors. In the context of a wave- 
model computation, where the spectral resolution is fixed, the 
principal question becomes: how fine an integration-grid res- 
olution is required to estimate the hybrid coefficients D, and 
hybrid sum (38) with acceptable precision? In the context 
of computations to resolve details of the frequency and an- 
gle dependence of the nonlinear-transfer spectrum, where the 
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maximum practical integration-grid resolution is fixed, this 
question becomes: how fine a spectral resolution is possible 
without introducing unacceptable error (fine structure) into 
this sum? In either case, the convergence of the computation 
is readily evaluated by comparing transfer computations with 
one resolution fixed and the other variable. 

The representational error N/• is determined by the spec- 
tral resolution and choice of spectral representation and is by 
definition independent of the integration-grid resolution and 
choice of integration variables. Of particular interest is the er- 
ror resulting from the choice of spectral representation. Direct 
evaluation of this error using the integration procedure out- 
lined in section 1 is probably beyond our present capabilities. 
A simpler less-direct evaluation, however, can be obtained by 
comparing piecewise-constant and piecewise-linear estimates 
of the nonlinear transfer for the same choice of spectral resolu- 
tion and input action spectrum. Because the representational 
error for the piecewise-linear case can be assumed small com- 
pared with that for the piecewise-constant case, the difference 
between these estimates should be comparable with the rep- 
resentational error for the piecewise-constant case. Ideally, 
one should compare fully convergent piecewise-constant and 
piecewise-linear estimates. 

Previously, SNLdV [1990] have looked briefly at both the 
integration and representational error, concluding that with 
the integration variables and spectral resolution chosen for 
these computations, (1) four-degree integration-grid angular 
resolution is not sufficient to give a convergent integration and 
(2) a less than fully converged piecewise-constant computation 
and a less than fully converged piecewise-linear EXACT-NL 
computation give similar but not identical estimates for the 
nonlinear transfer. 

In this section we further investigate both errors. We fo- 
cus first and foremost on the integration error, extending the 
SNLdV convergence study to an angular resolution of one de- 
gree, using a slightly different input spectrum and a three- 
order-of-magnitude more efficient version of hybrid software. 
We then present some recent computations with an order-of- 
magnitude more efficient version of EXACT-NL that demon- 
strate the two-sided character of the integration error, showing 
the emergence of computation-dependent fine structure with 
fixed integration-grid resolution and increasing spectral reso- 
lution. These computations also enable a more nearly conver- 
gent evaluation of the difference between piecewise-constant 
and piecewise-linear estimates for the nonlinear transfer, in- 
dicative of the representational error in the piecewise-constant 
computation. 

There are essentially two approaches to computing the hy- 
brid coefficients Din. One possible approach is to identify, an- 
alytically define the boundaries of, and tune the choice of inte- 
gration variables to the geometry of the various untransformed 
and transformed cells of section 3, within which the vector 
indices are constant. The second approach, which we have 
adopted, is to "brute force" the computation by subdividing 
the integration space into regular hypervolume increments, as- 
signing each entire increment to the untransformed and trans- 
formed vector-index cells containing the central point of the 
increment, and relying on a decrease in increment size to re- 
duce the error from increments extending into more than one 
untransformed or transformed cell. 

With this approach, there are two identifiable sources for 
the integration error. The first of these is the imperfect con- 
gruence between the true and effective geometry of the vector- 
index cells. The second is the rapid variation of the interac- 

tion-coefficient and Jacobtan factors of the Boltzmann inte- 

grand, whose product we are integrating over these cells to 
form the hybrid coefficients. In either case, the error is re- 
duced to an acceptable level by essentially refining the inte- 
gration-grid resolution until there are sufficiently many inte- 
gration volume increments and a sufficiently low proportion of 
boundary-containing volume increments in each vector-index 
cell. 

To facilitate the investigation of the convergence of the com- 
putation, we have developed an efficient, compact, and simpli- 
fied version of the EXACT-NL Boltzmann-integral software, 
specialized to deep water and to a piecewise-constant repre- 
sentation of the action spectrum. This software, described in 
more detail by Snyder et al. [1992], operates in two modes. 
The first mode provides a direct estimate of the nonlinear 
transfer for a given input spectrum, while the second mode 
provides estimates for the coefficients and cmTesponding vec- 
tor indices, from which the nonlinear transfer can in turn be 
estimated. Because the first transfer mode does not involve 

sorting and its inner loop vectorizes, this mode is more effi- 
cient at low integration-grid resolution. At high resolution, 
however, where large arrays of neighboring integration grid 
points belonging to the same vector-index cell can be summed 
prior to sorting without paying too heavy a price in overhead, 
the second coefficient mode is marginally more efficient. 

A two-dimensional polar spectral grid defines the resolution 
and bin structure of both the input action spectrum and the 
output action-transfer spectrum. The spectral bins are cen- 
tered on NWNS wave-number grid points distributed logarith- 
mically between (and bordering) the limiting spectral wave 
numbers kmin and k• and on the NTHS (= S) angle grid 
points 

271' ($ __ 1 = = 
A five-dimensional integration grid defines the values of the 

integration variables •, 5;, •, Oa, and t• for which the inte- 
grand of (28) is evaluated to form the Riemann approximants 
(36) and (38). With a view toward the convergence study, 
we have chosen to make this five-dimensional grid a func- 
tion of two resolution parameters only, an angle increment, 
controlling the last four integration variables, and a propor- 
tional wave-number increment, controlling the first. An ex- 
tension of the frequency angle •, defined by (22), determines 
d;. These increments are in turn defined by two parameters, 
NTHH, the number of angle increments in 2•r radians, and 
NWNH, the number of proportional wave-number increments 
for 2k•i,• < • < 2k•,a•. A third parameter MWNH speci- 
fies the number of proportional wave-number increments for 
•c < 2kmi,, (as discussed below). Note that this choice of 
integration variables does not utilize the stretched variables 
of EXACT-NL. We have traded a presumnably faster rate of 
convergence for simplicity and fewer resolution parameters. 

We have also restricted the boundaries of the integrand to 
exclude interactions for which one of the interacting compo- 
nents lies outside the linfits of the spectral grid. This restric- 
tion introduces a clear distortion into the resulting nonlinear 
transfer, m• excess positive transfer at frequencies approach- 
ing the upper limit frequency that results because counterbal- 
ancing negative transfers from these components to higher- 
frequency components are excluded. Because this distortion 
is consistent throughout the convergence study, however, the 
conclusions of this study are uncompromised. 

To the extent that the primary source of integration error 
for the brute-force piecewise-constant computation is the im- 
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proper distribution of coefficient increments from volume ele- 
ments extending into multiple untransformed or transformed 
vector-index cells, this error would be expected to vary as 
the ratio of cell-surface-containing volume to total volume. A 
simple calculation suggests that this ratio should be roughly 
proportional to 1/NWNH -+- 4/NTHH. This result has two 
important implications: the corresponding linear rate of con- 
vergence will be comparatively slow, and it may be necessary 
to refine the angle resolution by a factor of four, relative to 
the wave-number resolution, to get comparable convergence 
with respect to both resolution parameters. 

The slow rate of convergence is troublesome. Because the 
nonlinear-transfer computation is a five-dimensional integra- 
tion, doubling the resolution (multiplying both NWNH and 
NTHH by two) essentially multiplies the run time by 25. 
Thus, in refining the resolution of this computation, one rap- 
idly reaches the limits of available computer time. Simulta- 
neously, the storage of the large number of EXACT-NL co- 
efficients that must be sorted and pre-summed to form the 
hybrid coefficients becomes problematic. The present compu- 
tation, however, (1) uses a piecewise-constant spectral repre- 
sentation, which simplifies the arithmetic by eliminating the 
spectral interpolation, at the same time, however, increas- 
ing the representational error of and decelerating the rate of 
convergence of the nonlinear-transfer estimates; (2) employs 
deep-water •c scaling [Hasselmann, 1963] that avoids repeated 
iterative determination of the interaction variables and re- 

peated evaluation of the interaction coefficient and JacobJan; 
(3) separates the inner ,• loop into two loops, the innermost of 
which vectorizes in transfer mode a•d is bypassed altogether 
in coefficient mode; and (4) directly sums, in coefficient mode, 
a large fraction of the coefficient increments prior to sorting 
and final summing (merging). These efficiencies allow us to 
achieve integration-grid resolutions essentially two doubhngs 
beyond the previous SNLdV computations (2 •ø as many inte- 
gration volume elements). 

The present computations for NWNS = 16 and NTHS = 10 
again investigate convergence by assuming a standard input 
spectrum and comparing two representative outputs of the 
computation as a funct. ion of the integration-grid resolution 
parameters NWNH and NTHH. The first of these outputs is 
the total number M/S of coefficients Din. The second is the 
angle-integrated action-transfer spectrum f dO N. Two other 
output comparisons axe not presented because they axe are not 
as easily summarized. These axe the values of the individual 
coefficients D,, and the two-dimensional action transfer N. 

The input spectrum for the present piecewise-constant com- 
putations was a JONSWAP product spectrum, 

• (•_•)2 
1 • (•)-47½ 2;2 A(k) = •(•]c-4•-1(• - •(0), (39) 

with directional distribution 

•4 0 (40) ,•(0) _= 3-• cøs8(• )' 
We chose the Phillips parmeter e - .01, peak frequency 
/• -- .6•r s -x , peak enhancement factor 7 - 3.3, and frequency 
spread factor •r - .07. Except for its directional distribution, 
this input spectrum was identical with that employed in the 
previous SNLdV computations. In either case, the choice of 
input spectrum, in particular the choice of JONSWAP pa- 
rmeters and directional distribution, is not important to the 
conclusions of the study. A wide range of comparable input 
spectra would have resulted in identical conclusions. (Note 

that, because the Ai have been assigned directly from (39) 
instead of by averaging over the spectral bands, the effective 
input spectrum for these computations is in fact a somewhat 
sharpened version of (39).) 

Using (39) as input, we computed the action transfer for five 
values each of the resolution parameters NWNH and NTHH, 
for a total of 25 cases, with each case identified by two resolu- 
tion indices. Table I shows the resulting number of coefficients 
D,, for five cases extending from the lowest-resolution case 11 
(NWNH = 24 and NTHH = 30) to the highest-resolution case 
55 (NWNH = 384 and NTHH = 330). Note that, in this lat- 
ter case, the pre-summing collapses some 2.8 x 10 •ø coefficient 
increments E, into 1.7 x 105 coefficients Dm, an average of 
1.7 x 105 increments per coefficient, and that over 99% of 
these coefficient increments are summed internally prior to 
sorting. The number of output coefficients M/S has not fully 
converged, but is levelling off to an asymptotic value of ap- 
proximately 2.0 x 105. 

Figure I shows the coxTesponding convergence of the angle- 
integrated action transfer with the wave-number resolution 
parameter NWNH (NTHH f•xed). Inspection of this figure 
suggests that, for all practical purposes, the computation has 
converged with respect to NWNH. Differences between the 
estimates for all three higher-resolution cases (NWNH = 96, 
192, and 384) are uniformly small. A somewhat different con- 
clusion is suggested by Figure 2, showing the convergence 
of this transfer with the angle-resolution parmeter NTHH 
(NWNH fixed). Here there is good convergence in bands 1 
and 2 and in bands 7 through 16, but bands 3 through 6, in 
particular bands 5 and 6, though apparently settling down, 
have not yet fully converged. Note that in these four central 
bands the progression in the transfer for the three higher- 
resolution cases is approximately linear in 1/NTHH. 

(Note also that the action-transfer spectrum N(w, 0) whose 
angle integral appears in the figures of this and the succeeding 
•ction i• • tr•n•fo=n•d v•r•ion of •h• •p•ct=•n •V (•). •V (•) 
is piecewise-constant in k and •. N(w,O) is portrayed as 
piecewise-constant in w. but is strictly piecewise-constant only 
in 0 and is only approximately piecewise-constant in w.) 

These results are more or less in keeping with the expecta- 
tions expressed previously. Convergence is slow and is appar- 
ently more sensitive to the angle-resolution parmeter NTHH 
than to the wave-number resolution parmeter NWNH. To 
achieve a full practical convergence, we have gone far enough 
with NWNH, but we may need one or two more doublings of 
NTHH. 

Unfortunately, we have already pushed the present brute- 
force computation to its practical limit. An increase in NTHH 
is possible only by substantially decreasing NWNH. Table 2 

TABLE 1. Number of Coefficients Generated as a 

Function of Integration-Grid Resolution 

Case NWNH NTHH Input Sorted Output 

11 24 30 123,862 63,279 32,948 
22 48 50 1,918,652 485,440 79,400 
33 96 90 40,063,032 4,025,013 126,732 
44 192 170 1,014,662,524 32,624,724 153,060 
55 384 330 28,712,235,836 264,641,771 170,662 

Boltzmann-integral computation in coefficient. •node. Input is 
total number N/S of input coefficient increments from integration- 
grid points within limit constraints (with non identically vanishing 
spectral product). Sorted is number of increments sorted following 
internal pre-summing. Output is resulting number M/S of output 
coefficients D,•. 
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Fig. 1. Integrated action transfer for various resolutions of the 
integration grid. Units are 10 -6 m 2 s and raA s -1. Computed for 
the JONSWAP spectrum (39) with directional distribution (40). 
NTHH is 330. NWNH is 24 (left-pointing triangle), 48 (right- 
pointing triangle), 96 (diamond), 192 (circle), and 384 (bullet). 

Fig. 2. Integrated action transfer for various resolutions of the 
integration grid. Units and input spectrum as in Figure 1. NWNH 
is 384. NTHH is 30 (left-pointing triangle), 50 (right-pointing tri- 
angle), 90 (diamond), 170 (circle), and 330 (bullet). 

and Figure 3 show the convergence of a series of computations 
for NWNH = 1. The maximum value for NTHH was 650, 
one step beyond the previous limit. Clearly the figure shows 
good practical convergence. It, however, represents only a 
partial contribution to a more realistic computation for larger 
NWNH. In frequency bands where the significant contribu- 
tions tend to cancel one another, the convergence of the full 
computation may not be as good. 

Following a suggestion by C. Calkoen, we have attempted 
to complete the argument by extrapolating the convergence 
study to the case of arbitrarily fine resolution (1/NWNH = 0 
and 1/NTHH = 0). Such an extrapolation is not altogether 
trivial. A straightforward unconstrained Lagrange polynomial 
extrapolation based on the 25 cases of the convergence study 
in fact gives unreasonable results. If we constrain this ex- 
trapolation by insisting that the first derivatives with respect 
to 1/NWNH and 1/NTHH vanish at the origin, we obtain 
much more reasonable results, but such a constraint is not 
consistent either with our explanation of the computational 
errors or with the observation that the progression of the three 
higher-resolution cases of Figure 2 is approximately linear in 
1/NTHH. Probably the most reasonable approach to this ex- 
trapolation is to exploit this latter observation by limiting the 
inputs to case 33, case 35, case 53, and case 55, and making a 
simple hnear unconstrained Lagrange extrapolation. Figure 4 
shows the comparison between (1) the high-resolution case 55; 
(2) an extrapolation based on all 25 cases of the convergence 
study, constrained as described above; and (3) this simple 
linear extrapolation. We note that a similar direct linear ex- 
trapolation of the coefficients D,• would appear to offer the 
best means for completing the estimates of these coefficients. 

A third parmeter controlling the Boltzmann integration 
is the lower •c limit MWNH. With logarithmic fc spacing, no 
matter how large MWNH is chosen, there are always legiti- 

mate interactions, involving largely opposed wave-component 
pairs, the wave numbers for which are within the bounds k,•in 
to k•aax, but for which the vector sum is small, that are not 
spanned by the computation. There are two reasons, however, 
for expecting these interactions to be relatively unimportant: 
their interaction coefficient is small, and, in a typical wind 
sea, whose directional distribution is confined to something 
less than a halfspace, the corresponding spectral product will 
be small. To simplify the convergence study above we have set 
MWNH = 0, uniformly ehminating all interactions for which 
•c < 2kmin. Figure 5 shows the results of an auxiliary study 
in which we assigned other values to MWNH. Note that the 
input spectrum for both this and the main convergence study 
has a broad directional distribution. Clearly MWNH = 0 is 
not only a convenient choice, but is also convergent. 

We next focus briefly on two prominent features of the non- 
linear transfer of figure 4. We note first that case 55 and the 
two extrapolations all show a decided double peak in the neg- 
ative lobe of the nonlinear transfer. We conclude that this 

double peak is a real feature of the nonlinear transfer for the 
input J ONSWAP spectrum. Such a double peak has often 

TABLE 2. Number of Coefficients Generated for 
Central Wave-Number Band 

NTHH Input Sorted Output 

50 76,370 19,132 5,852 
90 798,788 75,668 10,556 

170 10,120,182 304,836 14,834 
330 143,082,854 1,227,085 17,252 
650 2,150,297,504 4,953,859 18,866 

Boltzmann-integrM computation in coefficient mode. Input, 
Sorted, and Output as in TM)le 1. NWNH is 1. 
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Fig. 3. Integrated action transfer for various resolutions of the 
integration grid. Units are 10 -5 m 2 s and rad s -1. Input spec- 
trum as in Figure 1. NWNH is 1. NTHH is 50 (left-pointing 
triangle), 90 (right-pointing triangle), 170 (diamond), 330 (circle), 
and 650 (bullet). Properly scaled, this figure represents the par- 
tial contribution to the integrated action transfer from the central 
wave-number band, calculated for other (larger) values of NWNH. 

Fig. 4. Extrapolation of integrated action transfer to case of ar- 
bitrarily fine integration-grid spacing. Units and input spectrum 
as in Figure 1. Diamond is case-55 result with NWNH of 384 and 
NTHH of 330. Circle is constrained Lagrange extrapolation. Bullet 
is simple linear extrapolation. 

appeared in published lower-resolution computations of non- 
linear transfer (e.g., Hasselmann et al. [1973]). 

Secondly we note the clearly unphysical pile-up of nonlin- 
ear transfer in the upper bands 14, 15, and 16. As previously 
remarked, this pile-up results primarily from the upper limit 
constraint, which prevents these bands from transferring ac- 
tion to higher frequency bands. Figure 6 contrasts the case-33 
computation with a similar computation in which the upper 
frequency limit has been extended fivefold. As expected, this 
latter computation agrees quite well with the original com- 
putation except in bands 15 and 16, where it shows a much 
more reason.able transfer. This result encourages the specu- 
lation that in running a fully nonlinear wave model, one can 
account for the important nonlinear interactions with compo- 
nents whose frequencies exceed the upper frequency limit by 
simply extending the nonlinear-transfer computation by two 
or three frequency bands, using an extrapolation (based, for 
example, on a Phillips tail) to estimate the action spectral 
density in these bands from the density in the upper model 
bands (as in Komen et al. [1984], Young et al. [1987], and in 
the WAM model, WAMDIG [1988]). 

Throughout the convergence study reported above, we have 
fixed the spectral resolution. Refining the integration-grid 
resolution decreases the integration error and numerical fine 
structure, eventually yielding convergent estimates for the hy- 
brid coefficients and for the nonlinear transfer. Figure 7, ob- 
tained with a recently improved high-resolution non-hybrid 
piecewise-linear version of EXACT-NL, demonstrates that, 
if, instead, we fix the integration-grid resolution, refining the 
spectral resolution increases the integration error and numer- 
ical fine structure. 

HH, in their previous computations of nonlinear transfer, 
attempted to "match" these resolutions to give reasonable 

precision without excessive computational cost. As previously 
discussed and illustrated in the piecewise-constant case by 
Table 1, considerable redundancy of EXACT-NL coefficients 
is necessary to achieve reasonable precision. Too high an 
integration-grid resolution relative to the spectral resolution, 
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Fig. 5. Case-33 integrated action transfer for various MWNH. 
Units and input spectrum as in Figure 1. NWNH is 96 and NTHH 
is 90. MWNH is --24 (diamond), 0 (circle), and 24 (bullet). 
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Fig. 6. Effect of upper limit constraint on integrated action trans- 
fer. Units and input spectrum as in Figure 1. Circle is case-33 
transfer with NWNS of 16 and an upper frequency limit of i Hz. 
Bullet is extended case-33 transfer with NWNS of 31 and an upper 
frequency limit of 5 Hz. 
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Fig. 7. Convergence of the integrated action transfer with fixed 
integration-grid resolution and decreasing spectrM-grid resolution. 
Units and input spectrum • in Figure 1. Piecewise-linear EXACT- 
NL computation with an upper frequency limit of 5 Hz. NTHS is 
20 (circle) and 10 (bullet). 

however, and EXACT-NL carries out too many redundant . tegration, respectively. Removing the original gather-scatter 
computations, using too much computer time. (In the hybrid 
scheme, this redundancy is removed by pre-summing. Here it 
is desirable to employ a.s high an integration-grid resolution as 
possible in order to compute the pre-summed coefficients as 
accurately as possible.) Too low an integration-grid resolution 
relative to the spectral resolution and the output-transfer bins 
receive too few contributions from the relatively small num- 
ber of integration grid points, as a result of which the output 
spectrum develops a random numerically-based fine structure. 
This effect is apparent in some of the HH computations, for 
which the integration-grid resolution is insufficiently high rel- 
ative to the spectral resolution or, viewed alternatively as in 
figure 7, the spectral resolution is insufficiently low relative to 
the integration-grid resolution. 

We note in passing that the development of the hybrid in- 
tegration technique has coincidentally led to a number of re- 
lated improvements in EXACT-NL itself. In particular, it 
was noticed that the second-order linear-interpolation gather- 
scatter operations applied at each integration step in the orig- 
inal EXACT-NL computation can be replaced, without loss 
of accuracy, by the simpler first-order bin-assignment opera- 
tion of the hybrid technique. To retain the accuracy of the 
original computation, one need only carry out the first-order 
integration at higher spectral resolution. Increasing the spec- 
tral resolution has no impact on the EXACT-NL integration 
time, which is determined by the integration-grid resolution, 
and has only a marginal impact on its storage requirements. 
The required high-resolution input spectrum can be generated 
from the prescribed low-resolution input spectrum by a gather 
operation, and the corresponding high-resolution output spec- 
trum can be similarly transformed back to a low-resolution 
output spectrum by a scatter operation. These operations 
need be carried out only once, prior to and following the in- 

operations from the integration, together with other incre- 
mental changes, yields an order-of-magnitude speed-up in the 
EXACT-NL computation. 

Figure 8 compares recent high-resolution piecewise-linear 
and piecewise-constant EXACT-NL computations with the 
case-55 computation. To improve the comparison with the 
frequency-extended EXACT-NL computations, the high-fre- 
quency lobe of the extended case-33 computation has been 
spliced into the case-55 computation. Inspection of this figure 
suggests that: (1) The three distributions of angle-integrated 
nonlinear transfer are qualitatively and quantitatively com- 
parable, even more so than in the previous SNLdV compu- 
tations. There are, however, some systematic differences. 
(2) The two piecewise-constant computations are comparable 
throughout the entire frequency range. They both show a very 
sharp transition between the positive low-frequency lobe and 
negative mid-frequency lobe of the transfer spectrum. This 
transition occurs at the same frequency. (3) The piecewise- 
constant EXACT-NL computation exhibits greater fine struc- 
ture than either the piecewise-linear EXACT-NL computation 
or the case-55 computation. (4) The piecewise-linear EXACT- 
NL computation does not show as sharp a transition to the 
negative mid-frequency lobe as do the piecewise-constant com- 
putations. The double peak in this lobe is displaced to slightly 
higher frequency. Note the similarity with the case-33 transi- 
tion. (5) The structure of the positive high-frequency lobe of 
the piecewise-linear EXACT-NL computation is also quMita- 
tively somewhat different from that of the piecewise-constant 
computations. In particular, there is a pronounced dimple 
on the low-frequency face of this lobe; correspondingly, its 
maximum occurs at higher frequency. 

We believe that these differences are partly the result of the 
different spectral representations employed in the piecewise- 
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Fig. 8. Comparison with EXACT-NL. Variables, units, and input 
spectrum as in Figure 1. Upper frequency limit is 5 Hz. Diamond 
is piecewise-linear EXACT-NL computation. Circle is piecewise- 
constant EXACT-NL computation. Bullet is case-55 computation, 
spliced to high-frequency lobe of extended case-33 computation. 

constant and piecewise-linear computations; partly the result 
of the different integration variables employed in the EXACT- 
NL and case-55 computations, given the still incomplete con- 
vergence of these computations; and partly the result of the 
fact that these computations employ slightly different effective 
input spectra. 

While these differences remain to be further investigated, 
the overriding conclusion to be drawn from the convergence 
study and Figure 8 is that the piecewise-constant hybrid com- 
putation of nonlinear transfer provides a relatively accurate 
estimate of the nonlinear transfer from wave-wave interac- 

tions, suitable for wave modeling in general and the SNLdV 
inverse-modeling program in particular. 

We further speculate that, if even greater accuracy is de- 
sired, a piecewise-linear hybrid computation can provide it. 
As discussed in Appendices A and B, such a computation will 
be somewhat more complex and will involve a larger number 
of coefficients. The hybrid summation will therefore not pro- 
ceed as rapidly as in the piecewise-constant case. Nonetheless, 
the improved fidelity of this representation and the expected 
improvement in the rate of convergence of the first-stage com- 
putation suggest that this representation is an appropriate 
focus for further development of the hybrid technique. 

As remarked previously, the convergence of the piecewise- 
constant computation is slow because the contribution of an 
integration-grid volume element that extends into more than 
one vector-index cell is not distributed among these cells but 
is assigned to the single vector-index cell of its central point. 
In effect, the geometry of this cell is distorted to better match 
the geometry of the integration grid. The resulting linear 
convergence depends critically upon sufficiently reducing the 
proportion of such volume elements. Similar remarks apply to 
the piecewise-linear spectral representation, but in this case, 
the situation is more confused. Here the vector-index cells are 

overlapping and the contribution of a volume element is di- 
vided among a single complex of vector-index cells associated 
with the central point of the volume element. If the volume 
element spans more than one such complex, this division is 
not as wide as it should be, but it is nonetheless an inverse 
function of the displacements between the central point of the 
volume element and the central points of these cells. Thus 
convergence should not depend so critically upon reducing the 
proportion of volume elements spanning multiple complexes 
and should be more rapid. 

5. EVALUATION OF THE HYBRID SUM 

We now turn to a second question of computational effi- 
ciency: given the coefficients Din, can we compute the hybrid 
sum (38) rapidly enough to enable a fully nonlinear third- 
generation wave model and make practical the inverse-mod- 
eling program of SNLdV? Even though the dimension of this 
sum is orders of magnitude smaller than that of the corre- 
sponding EXACT-NL sum (25) (just how many orders of 
magnitude depending on the integration-grid resolution of the 
EXACT-NL computation relative to the spectral resolution, 
as estimated from Table 1 by taking the ratio between Input 
and Output), a rapid evaluation of (38) is still necessary be- 
cause this summation is repeated many times. In both cases, 
however, the special circumstances that create this demand 
also provide the means for satisfying it. 

In the case of the wave model, the nonlinear sum (38) must 
be evaluated at every interior model grid point each time step. 
While the inner loop of this sum vectorizes, this vectorization 
is relatively ineffective because the range of the loop is rela- 
tively small. The bigger outer loop of the sum does not vector- 
ize because of the indirect indexing. The model computation, 
however, involves a third loop over the spatial grid points that 
can be placed innermost and whose vectorization is relatively 
effective (as in the WAM model, WAMDIG [1988]). 

In the case of the inverse-modeling program of SNLdV, 
which iterates a wave model and associated adjoint wave mod- 
el in search of model parameters that optimize the fit between 
the model prediction and synoptic observation, one can con- 
tinue to exploit vectorization on the grid points for both the 
model and the adjoint model, but in addition one can take 
advantage of the fact that only in the final stages of such a 
search will it be necessary to employ a relatively complete rep- 
resentation for the nonlinear transfer. In the intitial and in- 

termediate stages of this search, a perhaps severely trm•cated 
representation of this transfer will suffice. Here this repre- 
sentation need only be precise enough to point the search in 
approximately the right direction. 

In fact, we will show that it is possible to substantially 
reduce the number of terms in the hybrid sum (38) and still 
achieve a remarkably good representation for the nonlinear 
transfer. Consistent with (38), we can realize this reduction 
in two ways: We can either reduce the outer-loop number 
of hybrid coefficients D,•, or we can reduce the inner-loop 
number of spectral bands that we sum over. In either case, 
the CPU time T/v required to estimate the nonlinear transfer 
one time at every spatial grid point is directly proportional 
to this number of coefficients and to this number of spectral 
bands. 

SNLdV present some preliminary results for one particular 
approach to reducing both of these parameters. This approach 
was motivated and justified by an input directional distribu- 
tion that wanished outside the downwind halfspace. In this 
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section, we extend these preliminary results to the spectral 
grid and input directional distribution of section 4, which is 
small but nonvanishing outside this halfspace. We then con- 
sider two additional approaches for reducing the number of 
hybrid coefficients Din. 

The initial truncation eliminates coefficients with interac- 

tion angles •1, t•2, •3, and •4, any two of which differ by more 
than L,DTHS, where L = 2, 3, 4, and 5. This particular al- 
gorithm has much the same effect as the somewhat different 
algorithm applied by SNLdV, but gives marginally better re- 
sults and is marginally more efficient. Figure 9 shows the 
angle-integrated nonlinear transfer f dr9 N resulting from this 
truncation (with matching partial summation over 2L + 1 an- 
gle bands) for the representative input spectrum (39). Clearly, 
only L = 1 gives an integrated transfer that differs apprecia- 
bly from that of the untruncated case. A similar conclusion 
applies to all angle bands of the unintegrated transfer N in 
the range (-L,L). Note that this interaction-angle trunca- 
tion would be expected to be somewhat sensitive to the di- 
rectional dependence of the input action spectrmn but not to 
its frequency (wave-number) dependence. Thus it should per- 
form well during all stages in the growth of the spectrum, but 
would be suspect in the case of a rapidly turning wind. Table 3 
shows the corresponding number of coefficients and nonlinear- 
transfer computation times for the 104-interior-point Bight- 
of-Abaco wave-model grid employed by SNLdV, as computed 
on the NCAR Cray Y-MP. Two timings in single-processor 
CPU seconds are shown for each case, the first corresponding 
to a full summation over this angle, the second to a partial 
summation over this angle, matched to the truncation. 

A second approach to truncating the sum (38) is to base this 
truncation on the absolute size of the coefficients D,•. Such an 
approach is certainly valid, but is difficult to translate into an 
effective truncation algorithm. The most obvious algorithms 
for truncating this sum on the basis of size, independent of 

TABLE 3. Computation Times for 
Interaction-Angle Truncations 

L Output T•v T• 

5 170,662 13.24 13.24 
4 116,726 9.06 8.15 
3 65,934 5.12 3.58 
2 35,500 2.75 1.38 
i 11,444 .89 .27 

Single ti•ne step. Bight-of-Abaco grid. Output is number of 
coefficients D,• surviving truncation. Last two columns are com- 
putation times in CPU seconds for Cray Y-MP, with full sum over 
spectral angle and with matched partial sum over spectral angle, 
respectively. 

the input spectrum, are not very effective. For example, if one 
makes no attempt to scale the coefficients, but simply orders 
them and then truncates, a modest truncation gives a signifi- 
cantly different nonlinear transfer from the untruncated case. 
A somewhat more effective but still disappointing truncation 
results if one first scales the coefficients by fc 1•'5, then orders 
and truncates. Figure 10 shows the resulting integrated ac- 
tion transfer for two size-ordered truncations based on this 

latter fc scaling. Table 4 gives the corresponding nonlinear- 
transfer computation tixne. Figure 11 and Table 4 show the 
results of this •c-scaled size-ordered truncation, followed by an 
interaction-angle truncation with L = 2. 

Another way to size-order the coefficients is in relation to 
a specific input spectrmn (as in HH). Figure 12 and Table 5 
show the results of such an input-specific size-ordered trunca- 
tion. Here the coefficients D,• were ordered according to the 
size of the sum 
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Fig. 9. Effect of interaction-angle truncation on integrated ac- 
tion transfer. Units and input spectrum as in Figure 1. Case-55 
truncation. Truncation parameter L is i (left-pointing triangle), 
2 (right-pointing triangle), 3 (diamond), 4 (circle), and (no trun- 
cation) 5 (bullet). 
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Fig. 10. Effect of •:-scaled size-ordered truncation on integrated 
action transfer. Units and input spectrum as in Figure 1. Case-55 
truncation. Number of coefficients is 50,000 (diamond), 100,000 
(circle), and (no truncation) 170,662 (bullet). 
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TABLE 4. Computation Times for •-Scaled 
Size-Ordered Truncations 

Input T•v Output •/• T• 

100,000 7.76 23,896 1.85 .93 
50,000 3.88 7,646 .59 .30 

Single time step. Bight-of-Abaco grid. Input is number of 
coefficients D,,• in initial •-scaled size-ordered truncation. Sec- 
ond column is corresponding computation time in Cray Y-MP 
CPU seconds. Output is number of coeficients surviving additional 
interaction-angle truncation with L of 2. Last two columns are re- 
sulting computation times with full sum over spectral angle and 
matched partial sum over spectral angle, respectively. 

computed for the input spectrum (39). In addition, the inter- 
action-angle sum was truncated at L -- 2. Figure 12 shows 
the resulting integrated action transfer for this same input 
spectrum for four relatively substantial truncations. Table 5 
shows the corresponding number of coefficients m•d nonlinear- 
transfer computation times for the Bight-of-Abaco wave mod- 
el. Note that because the input-specific truncation is sensitive 
to the input directional distribution, these two truncations axe 
not independent. In the last case, for exaxnple, the interac- 
tion-angle truncation does not remove any additional coeffi- 
cients from the sum. 

Cleaxly, such input-specific size-ordered truncations axe ca- 
pable of substantially reducing the nonlineax-transfer compu- 
tation time, while at the same time providing an adequate 
representation for the nonlineax transfer. On the other hand, 
it is also clear that one must be careful in applying this kind 
of truncation, which works well for the input spectrum used 
to order the coefficients and may continue to work well over a 
range of input spectra not too fax removed from this spectrum, 
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Fig. 11. Effect of •-scaled size-ordered inter•ction•angle trunca- 
tion on integrated action transfer. Units and input spectrum as in 
Figure 1. Case-55 truncation. Diamond and circle are for initial 
size-ordered truncations of 50,000 and 100,000 coefficients, respec- 
tively, followed by an interaction-angle truncation. L is 2. Bullet 
is case-55 untruncated transfer. 
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Fig. 12. Effect of input-specific size-ordered interaction-angle 
truncation on integrated •ction transfer. Units and input spec- 
trum as in Figure 1. Case-55 truncation. Number of input coeffi- 
cients is 2,000 (left-pointing triangle), 5,000 (right-pointing trian- 
gle), 10,000 (diamond), 20,000 (circle), and (no truncation) 170,662 
(bullet). Interaction-angle truncation parameter L is 2. 

but which cannot be expected to work well for a substantially 
different input spectrtun, for exaxnple, with widely different 
peak frequency/2. 

There are two possible solutions to this anticipated diffi- 
culty, both of which can be expected to increase the compu- 
tation time, but probably not too substantially. The first pos- 
sible solution is to work with several truncations, each tuned 
to a different class of input spectrum, periodically subdividing 
the spatial grid into sections appropriate to each class. If the 
number of sections is small enough and the number of grid 
points in each section is large enough, the vectorization on 
the grid points will not be too adversely affected. The second 
possible solution is to form hybrid truncations by merging 
truncations for several different input spectra. This proce- 
dure will produce a laxger set of coefficients than any of its 
inputs, but, because some of the coefficients will be shared 
among these inputs, the number of resulting coefficients may 
be considerably less thm• the sum of the number of input co- 
efficients. 

TABLE 5. Computation Times for Input-Specific 
Size-Ordered Truncations 

Input Output T• 

20,000 15,036 .58 
10,000 9,460 .37 
5,000 4,988 .19 
2,000 2,000 .08 

Single time step. Bight-of-Abaco grid. Input is ilfitial number of 
coefficients from input-specific size-ordered truncation based on the 
JONSWAP input spectrum (39). Output is number of coefficients 
surviving additional interaction-angle truncation with L of 2. Last 
column is resulting computation time in Cray Y-MP CPU seconds, 
with matched partial sum over spectral angle. 
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Still a third possible solution is to further exploit •c scaling. 
The hybrid technique described in this paper takes advantage 
of this scaling to improve the efficiency of the computation 
of deep-water hybrid coefficients. It does not, however, take 
advantage of the redundancy in these coefficients implicit in 
this scaling [Komen et aI., 1984; HazzeImann et aI., 1985]. 
Undoubtedly, there are a number of ways to exploit this re- 
dundancy. In particular, one might introduce a. sliding fre- 
quency grid into the wave model. Alternatively, it may be 
possible to obtain a more efficient fixed-grid computation for 
input spectra of similar shape but differing peak frequency 
by ordering the hybrid coefficients so that the peak frequency 
translates into a vectoriza. tion-preserving indexing offset. A 
similar tactic may also be applicable to finite-depth compu- 
tations. 

Another possible way to reduce the nonlinear-transfer com- 
putation time is to incorporate the sum over spectral angle 
in (38) into the inner loop over the grid points by explicitly 
writing out the sum over angle. This tactic may be partic- 
ularly useful if, for one or a combination of several possible 
reasons, the sum over spatial grid points is recast as a sum 
of sums over subsections of the grid, one such subdivision, 
for example, accounting for differences of spectral class and 
a second subdivision accounting for the depth dependence of 
the nonlinear transfer. 

Finally, we emphasize that the above-discussed measures do 
not exhaust the possibilities for streamlining the computation 
of nonlinear transfer in a wave-model setting. One can con- 
ceive of many other such measures: time-step-splitting, high- 
frequency smoothing, or implicit-integration methods [WAM- 
DIG, 1988] to allow for the different evolutionary time scales 
of high- and low-frequency waves; multi-tasking; linearization 
of the transfer integral as one approaches the model optimum; 
etc. In particular, we have barely scratched the surface with 
respect to input-specific size-ordered truncations of the sum 
(38). 

In pursuing the inverse-modeling program that prompted 
this study, SNLdV will doubtless discover further ways to 
improve the efficiency of the Bight-of-Abaco computation. 
Nonetheless, it is clear that the success of this program does 
not depend on such further improvements. With working 
single-time-step computatio• times already well below one 
single-processor CPU second per hundred grid points, the 
computation described above appears to be already efficient 
and precise enough to enable this program, given a sizeable 
but finite commitment of computer resources. 

6. CONCLUSIONS 

We have described the implementation of a hybrid integra- 
tion scheme for computing nonlinear transfer from wave-wave 
interactions. This scheme essentially incorporates a simplifi- 
cation first proposed by Thicket [1982] into the EXACT-NL 
integration scheme of HH [1981, 1985]. Our principal conclu- 
sions are as follows: 

1. The hybrid integration scheme is appropriat½•to re- 
peated nonlinear-transfer computations employing the same 
finite spectral grid, as in wave models. This scheme combines 
the simplicity of earlier methods for computing the Boltzmann 
integral, which discretized this integral directly on the spectral 
grid, with the advantages of the EXACT-NL scheme, which 
exploits the principle of detailed balance, conservation of ac- 
tion, energy, and momentum, and various symmetries and 
discretizes the integral on a symmetrical five-dimensional in- 
tegration grid. It retains the precision and two-stage structure 

of the EXACT-NL computation, but, by incorporating the 
Thacker simplification, dramatically accelerates the second- 
stage computation, enabling a relatively efficient and precise 
estimate of nonlinear transfer in nonparametric two-dimen- 
sional wave models. 

2. The coefficients re(tuired by the second-stage hybrid com- 
putation are obtained by sorting and pre-summing the coeffi- 
cients from a first-stage EXACT-NL computation. This pre- 
summing, which expresses the Thacker simplification, arises 
essentially from a reversal of computational loops in the sec- 
ond-stage EXACT-NL computation, allowing one of these 
loops to be transferred to the first-stage computation. Phys- 
ically, the pre-summing collapses into single hybrid interac- 
tions multiple interactions belonging to the same spectral- 
band quadruplets. All interactions are represented, and these 
interactions axe represented in a uniquely efficient manner 
consistent with the spectral representation. 

3. In EXACT-NL, the second-stage computation time is de- 
termined by the resolution of the first-stage integration grid. 
In the hybrid scheme, this computation time is determined by 
the resolution of the spectral grid, independent of the integra- 
tion grid. The more precise the computation, the greater the 
relative reduction in the second-stage computation time. 

4. In both EXACT-NL and the hybrid scheme, the preci- 
sion of the second-stage computation is determined by the res- 
olution of the first-stage integration grid. Since the first-stage 
hybrid computation is carried out only once and, in contrast 
to EXACT-NL, has almost no impact on the second-stage 
computation time, one can afford to carry out the first-stage 
hybrid computation with very high resolution. 

5. The error in the resulting estimate for the action trans- 
fer in the ith spectral band Ni has two components, the resid- 
ual integration error associated with the high but necessarily 
finite resolution of the integration grid, and the representa- 
tional error associated with the finite representation of the 
action spectrum in the Boltzmann integrand, ms determined 
by the resolution of the spectral grid and the choice of spectral 
representation. 

6. To investigate these errors for the case of a piecewise- 
constant spectral representation, we have developed a com- 
pact piecewise-constant version of EXACT-NL in which the 
gather-scatter operations have been replaced by a simpler bin- 
assignment procedure. We further improve the efficiency of 
the computation by incorporating deep-water /e scaling and 
internal pre-surnming prior to sorting. 

7. The computation of fully convergent estimates for the 
corresponding nonlinear transfer is difficult. Convergence is 
slow, and a doubling of the integration-grid resolution corre- 
sponds to a 25 increase in CPU time. We are able to refine 
this integration-grid resolution two doublings beyond a previ- 
ous set of computations to a maximum angle resolution con- 
trolling four integration variables of approximately one part 
in 330 (.-• 1 ø) and a maximum wave-number resolution con- 
trolling one variable of one part in 384. The computation has 
essentially converged with respect to the wave-number res- 
olution and has almost converged with respect to the angl e 
resolution. 

8. Comparison of the resulting action transfer with a piece- 
wise-linear EXACT-NL computation suggests that the repre- 
senrational error associated with the piecewise-constant rep- 
resentation is typically only a small fraction of this transfer. 
Extension of the hybrid scheme to the piecewise-linear case 
presents no basic difficulty, but the number of hybrid coeffi- 
cients would be expected to increase significantly. 
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9. The CPU time required to evaluate the second-stage hy- 
brid sum can be substantially reduced by truncating this sum. 
This truncation can be accomplished by reducing the number 
of interaction coefficients and/or by reducing the number of 
spectral angles, retaining the same angie increment. While 
these measures inevitably degrade the nonlinear-transfer esti- 
mates, substantial truncations are possible without significant 
degradation. Interaction-angle truncation is very effective, 
but assumes that the directional distribution is correspond- 
ingly narrow. Input-spectrum-independent size-ordered trun- 
cations are disappointing. Input-specific size-ordered trun- 
cations are considerably more effective, but must be applied 
with care. 

10. A primary motivation for developing the hybrid scheme 
has been the need for a• efficient and precise a.lgorittnu for 
computing nonlinear transfer in the iterative inverse-wave- 
modeling program of SNLdV [1990]. While the details of an 
appropriate hybrid-sum truncation strategy for SNLdV re- 
main to be worked out, it appears that this stategy can rel- 
atively easily effect a working wave-model nonlinear-transfer 
computation time of well under one Cray Y-MP single-pro- 
cessor CPU second per hundred spatial grid points per model 
time step. 

11. Development of the hybrid scheme ha•s resulted in a 
number of simplifications and improvements of the EXACT- 
NL computation, accelerating this computation by about a 
factor of ten. The occasional fine-structure noise in previ- 
ous EXACT-NL computations has been identified as resulting 
from insufficient resolution of the integration grid compared 
to the spectral grid. For individual nonlinear-transfer compu- 
tations, EXACT-NL reinains the algorithm of choice, as there 
is no advantage to be gained from pre-surnming. 

APPENDIX A: EXTENSION OF THE HYBRID SCHEME 

TO THE PIECEWISE-LINEAR CASE 

In section 2 we introduced a piecewise-linear representa- 
tion of the action spectral density A and nonlinear transfer N 
in connection with our discussion of the EXACT-NL compu- 
tation of the Boltzmann integral. In this appendix we look 
more closely at this representation as a possible alternative 
framework for the hybrid computation. 

We begin by adopting a somewhat simpler bmxd structure 
than was employed in the computations of sections 4 and 5 
and calculating the corresponding scalar-product matrix c•. 
We center our bands on the intersections of the orthogonals 
of some basic frame of reference in/z-space; in this case, how- 
ever, we employ Cartesian rather than polar coordinates. Fur- 
thermore we assume a uniform spacing for these orthogonals. 
Finally, we use the adjacent orthogonals to define the bound- 
aries of the spectral bands instead of the half orthogonals. 
This choice results in an overlapping band structure and in a 
nonorthogonal basis. Let hi = (kli, k2i) be the center point 
of the ith band and let Ak be the spacing of the orthogonals. 
Then 

Ak Ak ' 

for [k,- kli[ _• Ak and [k•- k•i[ _< Ak, 

(7i =-- 0, otherwise. 

It follows that the scalar product 

Otij --• /d2k GiGj 

(A1) 

vanishes unless the bands i and j are overlapping. There are 
essentially three cases: 

Case 1. Bands i and j congruent (i = j). 
The integral subtends four subregions, surrounding the point 
ki. We have 

(j•o 1 2 4(Ak)2 o•i.i = 4(Ak)2 d• •2) = • . 

Case 2. Bands i ands j laterally adjacent. 
We consider the subcase kl1 = kli and k2j = k2i q- Ak. The 
integral subtends two adjacent subregions, separated by the 
line joining ki and k 1. We have 

(j•01 (if01 1 = = 

Case 3. Bands i and j diagonally adjacent. 
We consider the subcase klj = k•i + Ak and k2j = k2i q- Ak. 
The integral subtends a single subregion, with ki and k1 at 
diagonal comers. We have 

(•o 1 2 •6 = & - = 
It follows that the spectral-product matrix c• is symmet- 

ric and diagonally dominant. Each row of this matrix con- 
tains four elements of relative weight 1/4 and four elements 
of weight 1/16. The remaining elements are zero. Explicitly 

4(Ak)2(5i1 + fii1), O•ij = • (A2) 

where, as before, 6ij is the Kronecker delta and where • is a 
sparse symmetric matrix with zeros on the main diagonal. 

The inverse matrix c• -1 is also symmetric and diagonally 
dominant. Corresponding to (A2) we write 

_ o + ), 

where 7 satisfies the matrix equation 

This equation may be solved by expanding '7 in powers of •, 
yielding 

7 = -• +fi2 _ fia +.... (A3) 

To first approximation we have simply 

?i5 = -fiji. (A4) 

We next present a fmxnal derivation of the piecewise-linear 
hybrid expression for the nonlinear transfer. Expanding A and 
N as in (12), multiplying the action-balance equation (1) by 
G,•(k), integrating over k, multiplying by -1 and summing Ot i ra • 

over m, we again obtain the prognostic equation (4), with Ni 
given by 

Ni - (Ak) -2 •'. Ti.i•,AiA•At, (A5) 
jkl 

with 

Wijk' • (z•k)2 Z --1 E O• i rn Tm•j k l , 
where " 
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Ti•ki •--/f//d2]Cl d2]c• d2]c3 d2]c4 
+ - - + - - 

•d 

with G• de•ed by (A1). 
The above equations involve two sets of hybrid coefficients, 

• EXACT-NL-related set T•k• •d an expanded set Tij•. 
The first of these equations expresses the no•inear transfer for 
the piecewi•-line• case • a hyb•d sm over the exp•ded 
set. FormMly, this sum is idemicM to that of the piecewise- 
const•t case. The •rence is that not • m•y of the co- 
efficients ToLl are zero. Furthermore, depen•ng on whether 
we use • estimate for • based on the full solu(ion (A3) or 
de•ved from the linear approximation (A4), the increase in 
the number of nonv•ishing coefficiems could be quite sub- 
stytiM. 

Because of this profusion of nonvanishing coefficients Tijkl, 
the equations (A5) do not provide a very useful statement 
of the piecewise-line• hybrid reset. An alternative form for 
these equations, that ibcuses instead on the less n•erous 
hyb•d coefficients Ti•kt •d •so i•inates the relationship 
between the estimates Ni de•ed by the projection focalism 
•d the nonline•-tr•sfer estimates N• resulting from an 
EXACT-NL computation, is 

with 

-= T•jklAjAkAt. 
jkl 

This form is computationally much more efficient than (A5) 
because it involves a much shorter hybrid sunnnation that is 
effected prior to the projection operation. 

Note that if we invert (A6), we obtain 

But the aij are nonnegative and 

Y•. a0 = (A/•) 2, for all i. 

Thus it is clear that the EXACT-NL estimates N/r are in 
effect smoothed versions of the Ni. 

Note also that the average transfer in a band of width (Zlk)2 
centered on ki (as wouht be estimated by a piecewise-constant 
computation) is of the form •1 eijNj, where the Nj are the 
piecewise-linear estimates, and where eij is obtained much as 
aij was obtained above, by integrating Gj over the ith such 
band. e is in effect a conversion matrix between the piecewise- 
linear and piecewise-constant spectral representations. This 
integration reveals that e is not precisely similar to a, but is 
very nearly so. As in the case of a, e is diagonally dominant, 
with vanishing nondiagonal elements, except for two groups 
of four elements in each row corresponding to laterally-adja- 
cent and diagonally-adjacent bands. The relative weighting 
of these diagonal, laterally-adjacent, and diagonally-adjacent 
elements are 4/9, 1/9, and 1/36 for a and 9/16, 3/32, and 
1/64 for e. It follows that the particular smoothing of the Ni 

that yields the EXACT-NL estimate N• is in fact comparable 
with just such an average. 

In summary, the projection formalism for the piecewise- 
linear case yields estimates for the nonlinear transfer at the 
center points of the spectral bands. EXACT-NL yields es- 
timates for something like the average transfer in a central 
section of these bands. These two sets of estimates are lin- 

early related and are readily converted, one to the other. The 
Ni should be converted from the N/r rather than computed 
directly from (A5). 

The hybrid coefficients Ti•kl would be expected to be sig- 
nificantly more numerous than in the piecewise-constant case. 
The new set of piecewise-linear vector indices will contain es- 
sentially the set of piecewise-constant indices plus adjacent 
indices. Note, however, that because many of these adja- 
cent indices may in fact duplicate piecewise-constant indices 
or other adjacent indices, the net increase in the number of 
coefficients may be moderate. Fhrthermore, working trunca- 
tions of the resulting hybrid sum may well contain essentially 
the same number of terms as truncations of comparable pre- 
cision for the piecewise-constant case. 

These formal results can be given a spectral-product form 
and the corresponding coefficients obtained in much the same 
way as in the piecewise-constant case. The attendant compli- 
cation of the Boltzmann integrand with respect to both com- 
puting and distributing the coefficient increments, however, 
will increase the computation time for given integration-grid 
resolution. On the other hand, the improved representation 
of the spectrum should yield a faster rate of convergence. 

These results, derived for a Cartesian spectral grid, can 
readily be extended to the polar grid employed in sections 
4 and 5, with some minor increase in the complexity of the 
spectral-product arithmetic. 

APPENDIX B: ALTERNATIVE DERIVATION 

OF THE HYBRID SCHEME 

In sections I and 3, Thacker's [1982] form of the discretized 
nonlinear-transfer integral was derived and incorporated into 
EXACT-NL, using a projection formalism and a piecewise- 
constant representation for the action spectrum. The analysis 
was extended to a piecewise-linear spectral representation in 
Appendix A. Here we show how EXACT-NL, with its built- 
in piecewise-linear spectral representation, and, by extension, 
any similar scheme, employing a higher-order spectral repre- 
sentat. ion, can yield the Thacker simplification directly, with- 
out explicit reference to the projection formalism. 

Consider the nonlinear-transfer integral in the symmetrized 
form (10). In EXACT-NL, the integral is transformed to some 
suitable set of eight symmetrical interaction variables, yield- 
ing, after integrating over the three resonance delta functions, 
an integral over the remaining five-dimensional integration 
space ,k --_ (A•,A2,A3, A4, As), a stretched version of the in- 
tegration variables employed in the present computations. A 
residual delta-function term p (equation (11)) in the integrand 
expresses the fact that the integration element dSA yields an 
equal positive or negative incremental change in the action 
spectra at each of the four vector wave numbers 
and k4 of the interaction quadruplet defined by ,•. Equation 
(10) then becomes, in differential form, 

dN(k) = a(,k)p(k, ,k)//(,X) dSA, (B1) 

where a is the interaction coefficient (with respect to the in- 
tegration space ,k) and//is the corresponding cubic spectral- 
product expression (6). 
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Since the spectrum is defined only at discrete vector wave 
numbers on a finite-resolution grid (denoted, as in section 
1, by /•i, /el, /zk, or /z•, with corresponding spectral densi- 

&, 
and A(/z4) needed to compute // for given • must be in- 
terpolated from the spectral-grid-point spectra] densities Ai. 
Similarly, the resulting incremental rate of change of the spec- 
trum at the four interaction vector wave numbers must be dis- 

tributed as incremental rates of change in these same spectral 
densities. In EXACT-NL, these operations are achieved by 
a second-order piecewise-linear gather-scatter interpolation- 
distribution scheme. One can also use a simpler first-order 
nearest-neighbor scheme corresponding to a piecewise-con- 
stant spectral representation, as is done in our present ver- 
sion of'the hybrid scheme, or, alternatively, some higher-order 
gather-scatter scheme. 

For any given interpolation-distribution scheme, the fac- 
tor H in (B1) decomposes into a weighted sum over a set 
of cubic spectral products AjAkAt, where the index-triple 
j kl represents various subsets of spectral-grid vector-wave- 
number triplets occuring in the interpolation of the interaction 
quadruplets defined at integration grid points •. 

Each cubic-product term, in turn, is associated with an in- 
cremental action-spectral-density change at various spectral 
grid points/zi. In terms of the discretized spectrum, the dif- 
ferential form (B1) therefore becomes 

1 

dNi = •ii '5 Dij•t(.k)AjA•At dS)•, (B2) 
where Ri is the area of the ith spectral bin, into which the 
ith increments are distributed, and Dijkl is a coupling coeffi- 
cient that is proportional to • and depends otherwise on the 
various interpolation-distribution weighting coefficients. In 
EXACT-NL, equation (B2) is summed over all integration in- 
crements dSA, and the resulting incremental rates of change of 
the spectra at each of the neighboring grid points of an inter- 
action quadruplet defined by .k are accumulated in the appro- 
priate spectral bins during the course of the summation. The 
coefficients Dij•t and interpolation-distribution weights are 
precomputed as functions of .k, but are not pre-summed for 
identical spectral-product combinations. The spectral prod- 
uct //is computed as a function of the interpolated spectra 
for each new volume element dSA. Thus the summation over 

3• appears formally as an outer loop, while the interpolation- 
distribution over the spectral grid points may be regarded as 
an inner-loop operation. 

In the hybrid scheme, the procedure is reversed. The outer- 
loop summation is carried out over the set of all grid-point 
combinations ij kl, and .k is summed over all permissible val- 
ues for given ijkl in an inner loop. The summation over .k 
is carried out as a separate precomputation and the resultant 
coefficient 

stored for the later transfer computations, giving 
1 

N• = • 5 T•jktAjAkAt, 
in agreement with (7). 
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