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ABSTRACT 

Results from a control integration and time-dependent greenhouse warming 

experiments performed with a coupled ocean-atmosphere model are analysed 

in terms of their signal-to-noise properties. The aim is to identify components 

of a multivariate "fingerprint" vector which may be useful for detecting 

greenhouse-gas-induced climate change. The three 100-year experiments 

analysed here simulate the response of the climate system to a step-function 

doubling of C02 and to the time-dependent greenhouse gas increases specified 

in Scenarios A ("Business as Usual") and D ("Draconian Measures") of the 

Intergovernmental Panel on Climate Change (IPCC). 

The pattern correlation between the dominant EOF of the control run and the 

response experiments is used to measure the orthogonality of signal and noise 

patterns. For signal detection, the most favorable orthogonality relationships 

are obtained for surface air temperature, precipitable water, and zonally-

averaged vertical temperature changes (stratospheric cooling and tropospheric 

warming). The EOF 1 pattern of sea level pressure in the Scenario A and 

2xC02 experiments is similar to the pattern of the dominant noise EOF. 

Between - variable pattern correlations indicate that near surface temperature 

and precipitable water provide non-overlapping information about the 

predicted signal. 

In order to obtain estimates of the variance of linear trends on timescales of 

up to 100 years, we use results from a 3,800-year "natural variability" 
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integration performed with an uncoupled ocean model. This information is 

then used to assess the significance of linear trends in principal component 

(PC) time series from the control and Scenario A experiments. For surface 

temperature, the overall linear trend in PC 1 of Scenario A is over three times 

larger than the variance of 100-year trends estimated from the natural 

variability experiment. Appropriate paleoclimate data and long (> 500 years) 

natural variability experiments with fully coupled ocean-atmosphere models 

are required in order to confirm these results. 

1. INTRODUCTION 

Recently, considerable attention has been devoted to the problem of detecting the climatic 

signature of the enhanced greenhouse effect (Wigley and Barnett, 1990). It has been proposed 

that the chances of detecting an enhanced greenhouse effect in the observations would be 

improved by the use of a multivariate "fingerprint" (Madden and Ramanathan, 1980; 

MacCracken and Moses, 1982). At least five criteria have been proposed for selecting the 

components of such a fingerprint vector (Barnett and Schlesinger, 1987; Wigley and Barnett, 

1990; Barnett, 1991; S an ter et al., 1992): 

1. Each individual component should have high signal-to-noise ratios in the model-

predicted data. 

2. The "fingerprint" vector should not differ from model to model. 

3. The "fingerprint" vector should be easily distinguished from (i.e., orthogonal to) the 

signals due to forcing factors other than greenhouse gases and from the noise of 

natural internally-generated variability on the 10-100 year timescale relevant to the 

detection of the greenhouse effect. 

4. Each component of the "fingerprint" vector should provide information which does 

not strongly overlap with the information of other components. 

5. Suitable observational data should exist. Because it is the 10-100 year timescale that 

is of concern, long data records are needed. 

Here, we examine output from time-dependent experiments performed with a coupled ocean-

atmosphere model according to the signal-to-noise, orthogonality, and uniqueness of 

information criteria (1,3,4). The aim is to demonstrate techniques for identifying potentially 

useful components of a greenhouse gas "fingerprint". 
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Signal-to-noise (S/N) and orthogonality properties can be defined in a number of different 

ways. In the context of greenhouse gas response experiments, three aspects have been 

examined: 

1. Overall magnitude; e.g., some measure of the overall change in mean (response 

minus control) relative to the temporal variance of the control or the (pooled) variance 

of control and response (Wigley and Jones, 1981; Barnett and Schlesinger, 1987; 

Barnett et al., 1991; Santer et al., 1991). 

2. The similarity of signal and noise spatial patterns (Barnett and Schlesinger, 1987; 

Barnett et al., 1991; Mikolajewicz et al., 1991). 

3. The relationship between the magnitude of a trend in a time-evolving signal and the 

variance of trends (on the time scale appropriate to the signal) in a long control run 

(Mikolajewicz et al., 1991). 

Previous studies have focussed on items (1) and (2). As more time-dependent greenhouse gas 

experiments are performed, it will become increasingly important to consider (3) and 

explicitly include the time dimension in estimating S/N properties. The problem is to 

determine whether the trend in a time-dependent response experiment is large relative to the 

trends which could occur due to internally-generated natural variability. 

Since any climate signal due to the enhanced greenhouse effect evolves on the decadal to 

century timescales, we are primarily interested in analysing the noise on similar timescales. 

Here, we use results from a 3,800-year "natural variability" integration performed with an 

uncoupled ocean model (Mikolajewicz and Maier-Reimer, 1990) in order to estimate the 

variance of linear trends on timescales of up to 100 years. This information is then used to 

assess the S/N properties of principal component (PC) time series from the Scenario A 

experiment. 

It should be stressed that there are (and will continue to be) model-dependent ucnertainties 

in defining an enhanced greenhouse effect, signal, and in determining the magnitude and 

spatial structure of low frequency internally-generated natural variability. The focus of this 

study, therefore, is on methodological aspects, and further experiments are necessary in order 

to confirm the results presented here. 
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2. THE COUPLED MODEL 

The model which was used for performing the time-dependent integrations described below 

consists of an atmospheric GCM (ECHAM1) coupled synchronously to an ocean GCM 

(LSG). ECHAM1 is a low resolution (T21; 19 vertical layers) version of the spectral model 

developed at the European Centre for Medium Range Weather Forecasts (ECMWF). It has 

been extensively modified for climate purposes in Hamburg (Roeckner et al., 1989), and has 

been used for a number of different sensitivity experiments (Cess et al., 1989; 

Lautenschlager and Herterich, 1990). 

The LSG (Large Scale Geostrophic) ocean GCM developed by Maier-Reimer and 

Hasselmann (1987) is based on a numerical formulation of the primitive equations appropriate 

for large scale geostrophic motion. It has 11 vertical levels and a horizontal resolution of 

3.5° χ 3.5°. A detailed description of the model physics and control run performance is 

given by Maier-Reimer et al. (1991). The LSG model has been used in a variety of ocean 

circulation studies (Maier-Reimer and Mikolajewicz, 1989; Mikolajewiczand Maier-Reimer, 

1990; Mikolajewicz et al., 1990). 

A full description of the coupling procedure and flux correction scheme (Sausen et al., 1988) 

is given in Cubasch et al. (1991), together with information on the fidelity with which the 

coupled model reproduces important features of the observed climate. 

3. CONTROL AND GREENHOUSE WARMING SIMULATIONS 

The recent report of Working Group 1 of the Intergovernmental Panel on Climate Change 

(IPCC) presents four scenarios of future changes in greenhouse gas concentrations, ranging 

from unrestriced emissions in Scenario A ("Business as Usual") to severe restriction of 

greenhouse gas emissions after the year 2000 in Scenario D ("Draconian Measures"). 

Scenarios A and D were used to force the coupled model in two separate 100-year 

experiments. In the third greenhouse warming experiment, the response of the coupled model 

to an instantaneous doubling of equivalent atmospheric C02 concentration was considered. 

For reference, a 100-year control run was performed with fixed equivalent C02 

concentration. 

A full description of the design of the control run and greenhouse warming experiments is 

given in Cubasch et al. (1991), together with a brief analysis of the evolution of the surface 

air temperature signal. 
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4. EVOLUTION OF SURFACE AIR TEMPERATURE IN CONTROL RUN 

The global mean annually-averaged near surface air temperature drifts by less than 0.4° Κ 

during the 100-year integration (Figure 1). This quasi-stationarity with respect to the global 

mean masks large positivie and negative changes in the spatial distribution of temperature, 

with high latitude cooling in the Northern Hemisphere and warming in the Southern 

Hemisphere. The zonally averaged changes in near surface temperature (relative to the 

average of the first 10 years of the control run) are coherent in time and space (Figure 2). 

In the final decade of the control run there is strong cooling (= 5°C) in the Arctic and 

warming in the Ross ( » 6°C) and Weddell (~ 4°C) Seas (Figure 3). The area-weighted 

r.m.s. of this anomaly field is 1.1 °C. 

Does this behaviour of the control run represent internally-generated natural variability of the 

coupled ocean-atmosphere system (on timescales of a century or longer), spurious drift, or 

some combination of drift and natural variability? This a key question if the results obtained 

here are to have any relevance for detection of a model-predicted greenhouse gas signal in 

the observed data. 

Unfortunately, it is very difficult to discriminate between drift and natural variability without 

performing significantly longer integrations (> 500 years) with the coupled model. Such 

experiments have not yet been conducted. Therefore, we cannot definitively answer the 

question of whether the control run changes are due to drift or natural variability. Here we 

briefly examine the evidence for each interpretation. 

Some evidence for a natural variability interpretation can be gained by comparing our results 

with data from a 3,800-year integration with the LSG ocean model (Mikolajewicz and Maier-

Reimer, 1990; henceforth MM), in which the ocean was forced by white noise superimposed 

on the climatological fresh water fluxes. This uncoupled experiment yielded typically red 

variance spectra for a variety of ocean circulation indices (e.g. heat transport, 

streamfunction, ice volume, etc.), with power increasing monotonically towards low 

frequencies for time scales up to several centuries. The variability displayed by the coupled 

model is consistent with these results. There is also some agreement in the spatial pattern of 

variability: Both coupled and uncoupled experiments showed large variability in the vicinity 

of the Antarctic Circumpolar Current, a relatively sensitive region of the ocean circulation. 

However, in view of the idealized nature of the uncoupled experiment (surface temperature 

is essentially prescribed), we cannot determine whether the spatial structure of the 

temperature changes in Figures 2 and 3 is in fact consistent with the dominant natural 
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variability patterns implied in the MM experiment. 

Further insights into the nature of the non-stationarity demonstrated by the control run can 

be gained by comparing the spatial patterns of the control run anomalies and the flux 

correction fields (not shown). There is close agreement between the location of the large, 

positive SST anomalies in the Ross and Weddell Seas in the control run and the location of 

the largest heat flux corrections. This suggests that some of the non-stationarity in control 

run SST may be attributable to incomplete drift compensation by the flux correction, at least 

at high latitudes in the Southern Hemisphere. In the Northern Hemisphere, however, the 

alternating warm and cool episodes (Figure 2) are difficult to explain by drift alone, since 

the flux corrections applied are invariant from year to year. 

In the presence of substantial climate drift and/or natural variability, the evolution of the 

signal and its S/N properties can be sensitivie to the way in which the signal is defined. 

Here, we regard the non-stationarity of the control run as inherent natural variability of the 

coupled model. Assuming that the natural variability in the control run and the response 

experiments are uncorrelated, we define the time-dependent climate response in the 

greenhouse warming simulations as the deviation with respect to the average of the first 10 

years of the control run (see Cubasch et al., 1991, for an alternative definition). 

5. SIGNAL-TO-NOISE ORTHOGONALITY PROPERTIES 

Cubasch et al. (1991) used the pattern correlation between the first EOFs of the control run 

and the response experiments in order to measure the orthogonality of signal and noise 

patterns. This was done for surface air temperature only. Here, we consider a number of 

other variables (Table 1). A high pattern correlation indicates close correspondence between 

signal and noise patterns and poor orthogonality properties. For signal detection, the most 

favorable orthogonality relationships are obtained for surface air temperature (Figures 4a,b) 

and vertically-integrated precipitable water. Sea-level pressure shows the least favorable 

orthogonality properties, a result which agrees well with other studies (Barnett et al., 1991). 

For surface air temperature, the pattern correlation between EOF 1 of the control run and 

EOF 1 Scenario A is only 0.43 (This is associated mainly with the strong variability at high 

southern latitudes). This indicates that the dominant greenhouse warming pattern of the 

response experiment cannot have been strongly affected, in the space-time average, by a 

possible common spurious drift or natural variability signal. This conclusion is supported by 

the principal component (PC) time series shown in Figure 5. To generate these time series 
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we projected the signals of the control run and all three experiments (as defined in Section 

4) onto EOF 1 of Scenario A. The coefficient of the Scenario A EOF 1 pattern in the control 

run is close to zero. This shows that the dominant greenhouse warming signal in Scenario 

A can be clearly distinguished from the model's natural variability and/or drift. 

A strong vertical temperature contrast (stratospheric cooling and tropospheric warming) is 

a common feature of the greenhouse-gas signals simulated in a number of different model 

experiments (e.g. Schlesinger and Mitchell, 1987; Cubasch et al., 1991). Recently, Karoly 

(1987, 1989) has compared such signals with observations, and suggests that vertical 

temperature contrasts could be useful for detecting greenhouse-gas-induced climatic change. 

However, as Liu and Schuurmanns (1990) and Wigley and Barnett (1990) have pointed out, 

this characteristic signal may resemble the observed pattern of vertical temperature changes 

associated with low-frequency internally-generated natural variability. Our results suggest that 

the structure of the dominant control run EOF for vertical temperature changes is only 

weakly correlated (0.46) with the EOF 1 pattern of Scenario A (Table 1 and Figures 6a,b). 

There is, however, some correspondance of signal and noise patterns in the tropical 

troposphere and stratosphere, which requires further investigation. 

As noted by Barnett and Schlesinger (1987), each component of a multivariate detection 

vector should provide unique information. In order to test how well different variables fulfil 

this condition, we computed the between-variable pattern correlations for the first EOF of 

Scenario A (Table 2). The correlation between EOF 1 of surface air temperature and 

vertically-integrated precipitable water (which both showed favorable orthogonality 

properties; see Table 1) is only 0.23, indicating that these variables provide non-overlapping 

information about the predicted signal. This low correlation is due to the fact theat EOF 1 

of vertically-integrated precipitable water (not shown) has a strong tropical component and 

does not show pronounced land/sea contrast (cf. Figure 4a). This suggests that both surface 

air temperature and precipitable water would be useful components of a multivariate detection 

vector. 

6. SPECTRAL ESTIMATES OF SIGNAL-TO-NOISE BEHAVIOUR 

How do we assess whether the trends simulated in the three transient experiments described 

above are significant relative to the noise of the model's own internally-generated natural 

variability? This question has not been addressed in previous studies involving time-

dependent forcing of coupled ocean-atmosphere models. One of the difficulties involved in 
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Table 1: Spatial correlation between EOF 1 of the control run and EOF 1 of the Scenario 
A experiment for a number of different variables 

ORTHOGONALITY OF SIGNAL AND NOISE 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

VARIABLE 

2 m Temperature 

Vertical Temperature 

Precipitable Water 

Precipitation Rate 

Total Cloud Cover 

10 m U-Velocity 

10 m V-Velocity 

Sea Level Pressure 

Correlation 

0.43 

0.46 

0.50 

0.55 

0.57 

0.67 

0.69 

0.82 

ËV. EOF1 CTL 
(%) 

52.5 

61.4 

27.7 

12.8 

16.1 

17.4 

20.1 

27.7 

EV. EOF1 SZA 
(%) 

84.1 

97.6 

89.5 

17.3 

22.4 

28.4 

25.9 

36.9 

Table 2: Between-variable spatial correlation for EOF 1 of Scenario A. Correlations 
indicate the variables which provide overlapping information 

BETWEEN VARIABLE PATTERN CORRELATIONS 

VARIABLE 

TEMP" 

PWAT" 

PREC' 

MSLP" 

CLDSC 

UVEL' 

VVEL« 

TEMP 

1.00 

PWAT 

0.23 

1.00 

PREC 

0.04 

0.17 

1.00 

MSLP 

0.18 

0.37 

0.13 

1.00 

CLDS 

0.29 

0.02 

0.52 

0.39 

1.00 

UVEL 

0.16 

0.14 

0.20 

0.27 

0.14 

1.00 

VVEL 

0.21 

0.05 

0.11 

0.28 

0.22 

0.21 

1.00 

' TEMP: 2 m temperature 
b PWAT: Vertically-integrated precipitable water 
c PREC: Total precipitation rate 
d MSLP: Mean sea level pressure 
e CLDS: Total cloud cover 
' UVEL: 10 m u-velocity 
1 VVEL: 10 m v-velocity 
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answering this question is that (due to computational restrictions) state-of-the-art coupled 

models have been integrated for only < 100 years (Stouffer et al., 1989; Cubasch et al., 

1991). From a single 100-year control integration, a reliable estimate of the magnitude of 

century timescale natural variability cannot be derived. It is precisely the decadal to century 

timescale, however, that is important for the detection of a slowly-evolving greenhouse gas 

signal. 

One method of estimating the magnitude of natural variability on the century timescale would 

be to use long paleoclimate records with high temporal resolution, such as the 1400-year tree 

ring chronology for Scandinavia developed by Briffa et al. (1990). However, such 

reconstructions generally explain no more than 50 % of the variance associated with 

temperature. Further, we are interested here in determining the significance of 100-year 

trends derived from global data, such as the principal component time series shown in Figure 

5. It may be inappropriate to use low-frequency variance estimates obtained from regionally-

specific observed data for this specific purpose. 

Long experiments (> 1000 years) with uncoupled models provide a further source of 

information concerning century timescale natural variability. Here, we use results from the 

3,800-year "natural variability" experiment performed by MM in order to estimate the 

variance of linear trends onthe century timescale. The disadvantage of this approach is that 

(in the absence of results from long experiments with coupled ocean-atmosphere models) we 

do not know whether the low-frequency variance information derived from the ocean model 

alone is a good analogue for the results from a long experiment with a fully-coupled model. 

The advantage (relative to paleoclimate records) is that data from the 3,800-year natural 

variability experiment are available for the global ocean and have high temporal resolution. 

6.1 Significance of Linear Trends 

The significance of a trend can be determined in either the time domain or in the frequency 

domain (Bloomfield and Nychka, 1991). In both cases, the variance of the parameters 

describing the trend (the standard error) must be computed. Here, we use the approach 

outlined by Bloomfield and Nychka (1991) in order to compute the standard error, b, for 

linear trends on the 100-year timescale. 

Ideally, it would have been desirable to subject the output of the MM natural variability 

experiment to the same statistical analysis which was applied to the transient CO2 experiments 

(EOF analysis), and then to compute b for the principal component time series. This was not 

possible, since fields such as 2 m temperature in the transient CO2 experiments are 
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effectively prescribed in the uncoupled MM experiment. Here, we derive a range of estimates 

for b using time series of annual averages for various ocean variables from the MM natural 

variability experiment. The time series are global and regional (NorthAtlantic, North Pacific, 

Antarctic) averages for ice coverage, heat flux, salinity, loss of potential energy by 

convective overturning, etc. Each time series is converted into anomaly form, normalized, 

and divided into chunks of 100 years in order to compute b. The standard error then provides 

non-dimensional information on the variance of linear trends (due to internally-generated 

natural variability alone) on the 100-year timescale. Normalization ensures that values of è 

are comparable for variables with different variances. The principal component time series 

from the transient CC^ experiments (Figure 5) were also normalized in order to assess the 

significance of their linear trends. 

Estimates of b from the MM natural variability experiment are shown in Figure 7. The 

largest values of b are for ice coverage and loss of potential energy by convective 

overturning in the North Atlantic and Antarctic, while the smallest values of b are for 

globally-averaged temperature and salinity in the fourth model layer. Values of b are 

consistently smaller for globally-averaged quantities than for averages over an ocean basin. 

The mean value of b for all 17 variables is 0.0104, with a standard deviation of 0.0028. 

Values of b are also given for the spatially-correlated white-noise freshwater flux which was 

used to force the LSG OGCM (variables 18-21 in Figure 7). As expected, these are smaller 

than the values for all output variables. Note that for surface air temperature, the overall 

linear trend in PC 1 of Scenario A is over three times larger than the mean value of b. 

Table 3 shows the average linear trend per year, bu,1 in the (normalized) first principal 

component time series for the Scenario A experiment and the control integration. We assume 

that these trends are the signals of interest, and that the average value of b derived from the 

MM experiment2 is representative of century timescale internally-generated variability. The 

raio b^/b is a measure of signal strength. For Scenario A, signal strength is largest for 2 m 

temperature and precipitable water and smallest for sea level pressure. This ranking of 

variables in terms of their temporal signal-to-noise behaviour is similar to the ranking in 

terms of spatial signal-to-noise characteristics (see Table 1). 

Fitted by least-squares regression. 

Excluding the values of b for the whith-noise forcing terms, i.e., variables 18-21 in Figure 7. 
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Table 3: 
Linear trends for 100-year principal component time series. Results are from 
the Scenario A experiment and the control run and are for the first principal 
component time series only. Trends were determined by least squares regression 
(after normalization) and are expressed as the average trend per year. Numbers 
in brackets indicate the ratio between the linear trend and the average value of 
b (the variance of linear trends on timescales of 100 years) from the 
Mikolajewicz and Maier-Reimer (1990) natural variability experiment. 

LINEAR TRENDS FOR PC TIME SERIES 

No. 

1 

2 

3 

4 

VARIABLE 

2 m Temperature 

Precipitatile Water 

Precipitation Rate 

Sea Level Pressure 

SZA 

0.0340 

0.0339 

0.0299 

0.0146 

(3.27) 

(3.26) 

(2.88) 

(1.40) 

CTL 

0.0068 (0.65) 

0.0270 (2.60) 

0.0070 (0.67) 

0.0002 (0.02) 

7. CONCLUSIONS 

The aim of this analysis was to identify components of a multivariate "fingerprint" which 

may be useful for detecting greenhouse-gas induced climate change. We used three different 

aspects in order to identify "useful" variables: orthogonality of signal and noise patterns, 

uniqueness ofinformation provided, and the relationship between the magnitude of trends in 

the response experiments and the variance of linear trends on timescales of 100 years (b^/b). 

Surface air temperature and vertically-integrated precipitable water fulfil all three criteria. 

In contrast, the signal and noise patterns of SLP are similar. 

These results suggest that surface temperature, vertical temperature contrasts and precipitable 

water would be good choices for a multivariate detection vector, while SLP would be a poor 

choice. Appropriate paleoclimate data and long (> 500 years) natural variability experiments 

with fully coupled ocean-atmosphere models are required in order to corroborate these 

findings. Attempts should also be made in order to define an "optimum" greenhouse gas 

detection vector (Hasselmann, 1979), and to determine the characteristic fingerprints of other 

forcing mechanisms, such as solar variability and volcanic aerosols. 
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FIGURE 1: Time evolution of the global mean surface 
air temperature change for the three greenhouse war­
ming simulations, the control experiment and the 
IPCC "best estimates". 
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FIGURE 2: Time evolution of zonally-averaged chan­
ges in annual mean surface air temperature in the 
100-year control integration. Changes are expressed 
relative to the smoothed initial state (average over 
years 1-10) of the control run. 
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FIGURE 3: Geographical distribution of the changes 
in annually-averaged surface air temperature for the 
final decade (years 91-100) of the control integration. 
Changes are expressed relative to the smoothed 
initial state (average over years 1-10) of the control. 
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FIGURE 4: EOF 1 of the annually-averaged surface air 
temperature changes for Scenario A (a) and the con­
trol run (b). The explained variance is 84.1% and 
525% respectively. 
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FIGURE 5: Principal component time series for the 
projection of the surface air temperature response 
fields of the three greenhouse warming experiments 
and the control run onto EOF 1 of Scenario A. 
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FIGURE β: EOF 1 of the zonally­averaged annual 
mean temperature changes at 19 atmospheric levels 
for Scenario A (a) and the control run (b). The explai­
ned variance is 97.6 and 61.4% respectively 
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FIGURE 7: Relationship between the linear trends in 
the Scenario A and control run PC 1 time series (see 
Figure 5) and the standard error b, a measure of the 
variance of linear trends (due to internally-generated 
natural variability) on the 100-yeartimescale. Results 
from a 3,800 year experiment with an uncoupled 
ocean model were used in order to estimate values 
of b for 21 globally- and regionally-averaged ocean 
variables. 
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