203,605 research outputs found

    Cross sections for pentaquark baryon production from protons in reactions induced by hadrons and photons

    Get PDF
    Using hadronic Lagrangians that include the interaction of pentaquark Θ+\Theta^+ baryon with KK and NN, we evaluate the cross sections for its production from meson-proton, proton-proton, and photon-proton reactions near threshold. With empirical coupling constants and form factors, the predicted cross sections are about 1.5 mb in kaon-proton reactions, 0.1 mb in rho-nucleon reactions, 0.05 mb in pion-nucleon reactions, 20 μ\mub in proton-proton reactions, and 40 nb in photon-proton reactions.Comment: 14 pages, 7 figure

    The analysis of fatigue crack growth mechanism and oxidation and fatigue life at elevated temperatures

    Get PDF
    Two quantitative models based on experimentally observed fatigue damage processes have been made: (1) a model of low cycle fatigue life based on fatigue crack growth under general-yielding cyclic loading; and (2) a model of accelerated fatigue crack growth at elevated temperatures based on grain boundary oxidation. These two quantitative models agree very well with the experimental observations

    Oxidation and low cycle fatigue life prediction

    Get PDF
    When a metallic material is exposed to a high temperature in an ambient atmosphere, oxidation takes place on the metallic surface. The formed oxides (both surface and grain boundary oxides) are mechanically brittle so that if the stress is high enough the oxides will be cracked. The grain boundary oxide formation in TAZ-8A nickel-base superalloy was studied. The effect of oxide crack nucleus on low cycle fatigue life will be analyzed. The TAZ-8A was subjected to high temperature oxidation tests in air under the stress-free condition. The oxidation temperatures were 600, 800, and 1000 C. The oxidation time varies from 10 to 1000 hours

    Model Study of Three-Body Forces in the Three-Body Bound State

    Get PDF
    The Faddeev equations for the three-body bound state with two- and three-body forces are solved directly as three-dimensional integral equation. The numerical feasibility and stability of the algorithm, which does not employ partial wave decomposition is demonstrated. The three-body binding energy and the full wave function are calculated with Malfliet-Tjon-type two-body potentials and scalar Fujita-Miyazawa type three-body forces. The influence of the strength and range of the three-body force on the wave function, single particle momentum distributions and the two-body correlation functions are studied in detail. The extreme case of pure three-body forces is investigated as well.Comment: 25 pages, 15 postscript figure

    Three-Body Scattering without Partial Waves

    Full text link
    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. In its simplest form the Faddeev equation for identical bosons is a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. The elastic differential cross section, semi-exclusive d(N,N') cross sections and total cross sections of both elastic and breakup processes in the intermediate energy range up to about 1 GeV are calculated based on a Malfliet-Tjon type potential, and the convergence of the multiple scattering series is investigated in every case. In general a truncation in the first or second order in the two-body t-matrix is quite insufficient.Comment: 3 pages, Oral Contribution to the 19th European Few-Body Conference, Groningen Aug. 23-27, 200

    Three-Body Elastic and Inelastic Scattering at Intermediate Energies

    Get PDF
    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. For identical bosons this results in a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. The cross sections for both elastic and breakup processes in the intermediate energy range up to about 1 GeV are calculated based on a Malfliet-Tjon type potential, and the convergence of the multiple scattering series is investigated.Comment: Talk at the 18th International IUPAP Conference on Few-Body Problems in Physics, Aug. 21-26, 2006, Santos, Brazi

    Non-preemptive Scheduling in a Smart Grid Model and its Implications on Machine Minimization

    Get PDF
    We study a scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible feasible time interval during which their requests can be served. The grid controller, upon receiving power requests, schedules each request within the specified interval. The electricity cost is measured by a convex function of the load in each timeslot. The objective is to schedule all requests with the minimum total electricity cost. Previous work has studied cases where jobs have unit power requirement and unit duration. We extend the study to arbitrary power requirement and duration, which has been shown to be NP-hard. We give the first online algorithm for the general problem, and prove that the problem is fixed parameter tractable. We also show that the online algorithm is asymptotically optimal when the objective is to minimize the peak load. In addition, we observe that the classical non-preemptive machine minimization problem is a special case of the smart grid problem with min-peak objective, and show that we can solve the non-preemptive machine minimization problem asymptotically optimally
    corecore