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Abstract

The Faddeev equation for the three-body bound state with two- and three-

body forces is solved directly as three-dimensional integral equation. The

numerical feasibility and stability of the algorithm, which does not employ

partial wave decomposition is demonstrated. The three-body binding energy

and the full wave function are calculated with Malfliet-Tjon-type two-body

potentials and scalar two-meson exchange three-body forces. For two and

three body forces of ranges and strengths typical of nuclear forces the single

particle momentum distribution and the two-body correlation function are

similar to the ones found for realistic nuclear forces.
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I. INTRODUCTION

Three-body Faddeev equations for the bound state using local forces directly without
finite rank expansion have been solved since the pioneering work by Malfliet and Tjon [1] and
Osborn [2]. After this, a huge body of work by different groups followed, and calculations
using the Faddeev equations were either performed in momentum space, see e.g. [3–6],
in configuration space [7–9], or in a hybrid fashion using both spaces [10]. However, the
technique was always based on an angular momentum decomposition, which including spin
and isospin degrees of freedom lead to quite a large set of states. For instance allowing
NN forces to act in all states of total angular momenta j up to j=6, which is necessary
to control the 3H binding energy within 2 keV require 102 angular momentum and isospin
combinations (in the literature often called channels). In view of this very large number of
interfering terms and having in mind that computer resources are still increasing steadily,
it appears natural to give up such an expansion and work directly with momentum vectors
or position vectors in configuration space as it is common in Greens Function Monte Carlo
methods [11]. We started an approach based on momentum vectors as variables for the
three-boson bound state [12], which then could be extended to the three-boson continuum
in a straightforward fashion [13]. In configuration space Faddeev equations have been solved
applying vector variables for pure Coulomb bound-state problems, namely the e−e−e+ and
the ppµ− systems [14]. Including spin and isospin degrees of freedom together with realistic
nucleon-nucleon (NN) forces, a scheme based on momentum vectors has been applied to NN
scattering leading to integral equations in two variables [15], which can easily be solved on
present day computers.

Angular momentum decompositions even for three bosons require quite a tedious alge-
bra and care in a computational implementation [16] due to often nontrivial cancellations
between partial wave terms. This is especially true if one includes three-body forces [17,18].
In contrast, the formulation in terms of momentum vectors of the one Faddeev equation
for identical particles is very straightforward and transparent. In this paper we extend the
approach from Ref. [12] and include three-body forces for an investigation of the three-body
bound state. This study is meant only to demonstrate the ease in solving the Faddeev equa-
tion including three-body forces, and working directly with momentum vector variables.
Since we do not yet include spin and isospin degrees of freedom we do not address physical
questions directly related to the physical three nucleon system, but the numerical examples
given can shed some light on the wave function properties of three nucleons.

The paper is organized as follows. In Section II the Faddeev equation including two- and
three-body forces is formulated in terms of momentum vectors, and its solution, especially
the intermediate integrations are layed out in detail. Section III displays our choice of forces
and provides the necessary numerical insight for achieving an accurate solution. Wave
function properties are displayed in Section IV. Finally we summarize in Section V and
provide an outlook.

II. THREE-BODY BOUND STATE EQUATION WITH THREE-BODY FORCE

The bound state of three identical particles which interact via pairwise forces V i = Vjk

(i, j, k = 1, 2, 3 and cyclic permutations thereof) and a genuine three-body force V123 is given
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by the Schrödinger equation which reads in integral form

|Ψ〉 = G0(
3
∑

i=1

V i + V123)|Ψ〉. (2.1)

Here the free propagator is given by G0 = (E −H0)
−1, where H0 stands for the free Hamil-

tonian and E for the binding energy of the three-body system. Any three-body force V123

can be decomposed into three different pieces as

V123 =
3
∑

i=1

V
(i)
4 , (2.2)

such that V
(i)
4 is symmetric under the exchange of particles j and k (j 6= i 6= k). The

decomposition suggested in Eq. (2.2) is natural for e.g. realistic ππ 3N forces, which are
considered at present in all available 3N forces. Introducing Faddeev components |Ψ〉 =
∑3

i=1 |ψi〉 with

|ψi〉 = G0(Vi + V
(i)
4 )|Ψ〉 (2.3)

leads to three coupled integral equations

|ψi〉 = G0ti
∑

j 6=i

|ψj〉 + (1 +G0ti)G0V
(i)
4

∑

j

|ψj〉

= G0{ti
∑

j 6=i

|ψj〉 + (1 + tiG0)V
(i)
4

∑

j

|ψj〉}. (2.4)

The operator ti describes the two-body t-matrix in the subsystem jk. If we consider identical
particles (here bosons, since we are omitting spin), the three-nucleon wave function |Ψ〉 has
to be totally symmetric. As a consequence, the Faddeev components |ψi〉 are identical in
their functional form, only the particles are permuted. Thus it is sufficient to consider only
one component, e.g.

|ψ1〉 = G0t1P |ψ1〉 + (1 +G0t)V
(1)
4 (1 + P )|ψ1〉 (2.5)

In the following the index (1) will be dropped. The permutation operator P is given as
P = P12P23 + P13P23 and the total wave function reads

|Ψ〉 = (1 + P )|ψ〉. (2.6)

In order to solve Eq. (2.5) standard Jacobi momenta are used,

pi =
1

2
(kj − kk)

qi =
2

3

(

ki −
1

2
(kj + kk)

)

, (2.7)

where ijk = 123 and cyclic permutations thereof. For later clarification we label the coordi-
nates with ijk = 123 as system of ‘type (1)’, the ones with ijk = 231 as ‘type (2)’ and the
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ones with ijk = 312 as ‘type (3)’. With the Jacobi momenta from Eq. (2.7) and omitting
the arbitrarily chosen index 1, Eq. (2.5) reads

〈pq|ψ〉 =
1

E − p2

m
− 3q2

4m

〈pq|tP + V4(1 + P ) + tG0V4(1 + P )|ψ〉. (2.8)

Introducing the symmetrized two-nucleon t-matrix

ts(p,q;E) = t(p,q;E) + t(−p,q;E) (2.9)

and explicitly working out the permutation operator P in the first term of Eq. (2.8) leads
to

〈pq|ψ〉 =
1

E − p2

m
− 3q2

4m

[

∫

d3q′ts

(

p,
1

2
q + q′;E − 3

4m
q2
)

〈q +
1

2
q′,q′|ψ〉

+ 〈pq|V4(1 + P )|ψ〉 +
1

2

∫

d3p̃
ts
(

p, p̃;E − 3
4m
q2
)

E − p̃2

m
− 3

4m
q2

〈p̃q|V4(1 + P )|ψ〉
]

(2.10)

A three-body force (3BF) with two scalar meson exchanges and a constant meson-nucleon
amplitude can be written in the form of Eq. (2.2) with

V4 ≡ V
(1)
4 ∝ F (Q2)

Q2 +m2
s

F (Q′2)

Q′2 +m2
s

(2.11)

and a cutoff function

F (Q2) =

(

Λ2 −m2
s

Λ2 +Q2

)2

. (2.12)

The momentum transfer Q (Q′) is given by

Q = k3 − k′
3 = p − p′ − 1

2
(q − q′)

Q′ = k′
2 − k2 = p − p′ +

1

2
(q − q′), (2.13)

as indicated in Fig. 1.
For the evaluation of Eq. (2.10) matrix elements of the form 〈pq|V4(1+P )|ψ〉 need to be

calculated. From Fig. 1 we see that V4 can be considered as a sequence of meson exchanges
in the subsystem (12), called for convenience subsystem 3, and subsystem (31), called 2.
Inserting a complete set of states of the type 3 between V4 and (1 + P )|ψ〉 and another
complete set of states of type 2 between the two meson exchanges (see Eq. (2.11)), leads
after a straightforward evaluation to

〈pq|V4(1 + P )|ψ〉 =
∫

d3q′
F ((−p− 1

2
q − q′)2)

(−p − 1
2
q − q′)2 +m2

s

×
∫

d3p′
F ((−p + 1

2
q − 1

2
q′ − p′)2)

(−p + 1
2
q − 1

2
q′ − p′)2 +m2

s

〈p′q′|(1 + P )|ψ〉 (2.14)
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The propagators in Eq. (2.14) contain linear combinations of three or four momentum vectors
and thus the two integrations would involve magnitudes of vectors and angles between
them. Realizing that both meson-exchange propagators in the 3BF term only depend on
the momentum transfer in a two-body subsystem, one can rewrite Eq. (2.14) as

〈pq|V4(1 + P )|ψ〉 =
∫

d3p′d3q′ 〈pq|p′q′〉2

×
∫

d3p′′
F ((p′ − p′′)2)

(p′ − p′′)2 +m2
s

×
∫

d3p′′′d3q′′′ 2〈p′′q′|p′′′q′′′〉3

×
∫

d3p′′′′
F ((p′′′ − p′′′′)2)

(p′′′ − p′′′′)2 +m2
s

3〈p′′′′q′′′|Ψ〉. (2.15)

Here the subscripts 1, 2, 3 of the bra and ket vectors stand for the different types of coordinate
systems described by Eq. (2.7). Though the integrations of Eq. (2.15) look more complicated,
the meson-propagators show a very simple form. In fact, the integrations over p′′ and p′′′′

have an identical functional form. Defining

F3(p
′′′,q′′′) =

∫

d3p′′′′
F ((p′′′ − p′′′′)2)

(p′′′ − p′′′′)2 +m2
s

3〈p′′′′q′′′|Ψ〉, (2.16)

the integration of the meson exchange between particles 2 and 1 in Eq. (2.16) is carried out
completely in the coordinate system of type 3. Once F3(p

′′′,q′′′) is obtained, it needs to be
expressed in terms of momenta in a coordinate system of type 2 in order to carry out the
integration over the remaining meson exchange. This transformation, labeled F32(p

′′,q′) is
explicitly given as

F32(p
′′,q′) =

∫

d3p′′′d3q′′′ 2〈p′′q′|p′′′q′′′〉3 F3(p
′′′,q′′′)

= F3(| −
1

2
p′′ − 3

4
q′|, |p′′ − 1

2
q′|, (−

1
2
p′′ − 3

4
q′) · (p′′ − 1

2
q′)

| − 1
2
p′′ − 3

4
q′||p′′ − 1

2
q′| ).

(2.17)

Here we used that F3(p
′′′,q′′′) is a scalar function due to the total wave function Ψ(p,q)

being a scalar in the ground state. The integration over the second meson exchange between
particle 1 and 3 in the coordinate system of type 2 is now given by

F2(p
′,q′) =

∫

d3p′′
F ((p′ − p′′)2)

(p′ − p′′)2 +m2
s

F32(p
′′,q′). (2.18)

The matrix element 〈pq|V4(1 + P )|ψ〉 is finally obtained by integrating F2(p
′,q′) over p′

and q′, i.e. carrying out the final coordinate transformation from the system of type 2 back
to the one of type 1,

〈pq|V4(1 + P )|ψ〉 =
∫

d3p′d3q′〈pq|p′q′〉2F2(p
′,q′)

= F2(| −
1

2
p +

3

4
q|, | − p− 1

2
q|, (−

1
2
p + 3

4
q) · (−p − 1

2
q)

| − 1
2
p + 3

4
q|| − p − 1

2
q| ).

(2.19)
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Thus, the integration of Eq. (2.15), explicitly given in separate steps from Eq. (2.16) to
Eq. (2.19) contains only integrations over one vector variable at a time. It should be pointed
out that Eqs. (2.17) and Eq. (2.19) are only three dimensional interpolations. Clearly, the
in Eq. (2.15) suggested method is the preferred one for practical calculations.

The Faddeev amplitude ψ(p,q) is given as function of vector Jacobi momenta and ob-
tained as solution of a three dimensional integral equation, Eq. (2.10). For the ground state
ψ(p,q) is also a scalar and thus only depends on the magnitudes of p and q and the angle
between the two vectors. In order to solve the Eq. (2.10) directly without introducing partial
wave projection, we have to define a coordinate system. We choose the vector q parallel
to the z-axis and express the remaining vectors with respect to q. For the first term in
Eq. (2.10) the relevant vectors are p and q′. Thus one has aside from the magnitudes the
following angle relations

x = p̂ · q̂ = cos θ

x′ = q̂′ · q̂ = cos θ′

y = p̂ · q̂′ = cos γ (2.20)

where

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) = xx′ +
√

1 − x2
√

1 − x′2 cosφ′ (2.21)

Since the φ′ integration is over the full 2π interval we have a freedom of choice for the
azimuthal angle angle and set φ = 0. With these choice of variables Eq. (2.10) with only the
first term, i.e. two-body forces alone, was solved successfully in Ref [12]. For the evaluation
of the second term in Eq. (2.10),

〈pq|V4(1 + P )|ψ〉 = 〈pq|V4|Ψ〉, (2.22)

we start with calculating first F3(p
′′′,q′′′), Eq. (2.16), and realize, that for this integration

we can choose q′′′ parallel to the z-axis with corresponding simplifications for one of the
azimuthal angles. This leads to the explicit expression

F3(p
′′′, q′′′, x′′′) =

∫ ∞

0
dp′′′′p′′′′2

∫ +1

−1
dx′′′′

∫ 2π

0
dφ′′′′

(

Λ2−m2
α

Λ2+(p′′′2+p′′′′2−2p′′′p′′′′y′′′′)2

)2

(p′′′2 + p′′′′2 − 2p′′′p′′′′y′′′′)2 +m2
α

Ψ(p′′′′, q′′′, x′′′′).

(2.23)

The evaluation of F32(p
′′,q′), Eq. (2.17) is not an integration but rather a three dimensional

interpolation and explicitly given by

F32(p
′′, q′, x′′) =

F3





1

2

√

9

4
q′2 + p′′2 + 3p′′q′x′′,

√

1

4
q′2 + p′′2 − p′′q′x′′,

3
8
q′2 − 1

2
p′′2 − 1

2
p′′q′x′′

∣

∣

∣−3
4
q′ − 1

2
p′′
∣

∣

∣

∣

∣

∣+p′′ − 1
2
q′
∣

∣

∣



 .

(2.24)

with
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∣

∣

∣

∣

−3

4
q′ − 1

2
p′′

∣

∣

∣

∣

=
1

2

√

9

4
q′2 + p′′2 + 3p′′q′x′′

∣

∣

∣

∣

+p′′ − 1

2
q′

∣

∣

∣

∣

=

√

1

4
q′2 + p′′2 − p′′q′x′′. (2.25)

For the interpolation we apply the cubic splines introduced in Ref [18]. The integration over
the second meson exchange, i.e. the calculation of F2(p

′,q′) of Eq. (2.18) is functionally
the same as Eq. (2.23), since we can choose the variable q′ parallel to the z-axis. Thus we
have the same expression as Eq. (2.23) with p′, q′, x′, p′′, x′′ and φ′′ instead of p′′′, q′′′, x′′′,
p′′′′, x′′′′ and φ′′′′. Finally, the matrix element 〈pq|V4|Ψ〉 is explicitly obtained by a second
interpolation as

〈pq|V4|Ψ〉 ≡ V4Ψ(p, q, x)

= F2





1

2

√

9

4
q2 + p2 − 3pqx,

√

1

4
q2 + p2 + pqx,

−3
8
q2 + 1

2
p2 − 1

2
pqx

∣

∣

∣+3
4
q − 1

2
p
∣

∣

∣

∣

∣

∣−p − 1
2
q
∣

∣

∣





(2.26)

The last term of Eq. (2.10) requires an additional integration of the matrix element
〈pq|V4(1 + P )|ψ〉 and the half shell two body t-matrix. Again, with choosing q parallel
to the z-axis we only have three vectors to consider, p̃, p and q, thus the integration is of a
similar type as the one of the first term in Eq. (2.10),

1

2

∫

d3p̃
ts
(

p, p̃;E − 3
4m
q2
)

E − p̃2

m
− 3

4m
q2

〈p̃q|V4(1 + P )|ψ〉

=
1

2

∫ ∞

0
dp̃p̃2

∫ +1

1
dx̃
∫ 2π

0
dφ̃

ts
(

p, p̃, ỹp, ;E − 3
4m
q2
)

E − p̃2

m
− 3

4m
q2

V4Ψ(p̃, q, x̃) (2.27)

with

x̃ = ˆ̃p · q̂
ỹp = ˆ̃p · p̂ = xx̃+

√
1 − x2

√
1 − x̃2 cos φ̃. (2.28)

We obtain the energy eigenvalue E and Faddeev component ψ(p, q, x) of the three-body
system by solving Eq. (2.10).

Finally, we want to give the explicit expression for the full wave function from Eq. (2.6),
which is

Ψ(p, q, x) = ψ(p, q, x)

+ ψ





1

2

√

9

4
q2 + p2 + 3pqx,

√

1

4
q2 + p2 − pqx,

3
8
q2 − 1

2
p2 − 1

2
pqx

∣

∣

∣−3
4
q − 1

2
p
∣

∣

∣

∣

∣

∣−1
2
q + p

∣

∣

∣





+ ψ





1

2

√

9

4
q2 + p2 − 3pqx,

√

1

4
q2 + p2 + pqx,

−3
8
q2 + 1

2
p2 − 1

2
pqx

∣

∣

∣+3
4
q − 1

2
p
∣

∣

∣

∣

∣

∣−1
2
q − p

∣

∣

∣



 .

(2.29)
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The wave function is normalized according to
∫

d3p d3q Ψ2(p,q) = 1. (2.30)

III. CALCULATION OF THE THREE-BODY BOUND STATE

Our model calculations are based on Yukawa interactions. As two-body force (2BF) we
employ a Malfliet-Tjon [1] type potential

V (q,q′) = − g2
A

(2π)3

1

(q − q′)2 +m2
A

(

Λ2
A −m2

A

(q − q′)2 + Λ2
A

)2

+
g2

R

(2π)3

1

(q − q′)2 +m2
R

(

Λ2
R −m2

R

(q − q′)2 + Λ2
R

)2

, (3.1)

which is modified by a cutoff function of dipole type. With this choice, the 2BF and the
3BF have similar functional forms for the scalar meson exchanges. The force in Eq.(3.1) is
a superposition of a short-ranged repulsive and long-ranged attractive Yukawa interactions.
The coupling constants and exchanged meson masses are characterized by subscripts R and
A respectively. The exchanged masses mA and mR are those from the original Malfliet-
Tjon model, the coupling constants are chosen so that the two-body force gives a binding
of the three-body system which is slightly smaller than the experimental value of the triton
binding, which is 8.48MeV. The cutoff masses Λ have values typical for one-boson-exchange
models. The parameters for the 2BF, named MT2-II, are given in Table I. They lead to a
two-body binding energy of 0.284 MeV, and the S-wave phase-shift roughly follows the shape
of the experimental one for the state 3S1, though being less attractive. Since we neglect spin
degrees of freedom, any closer adjustment to real phase shifts would be meaningless anyhow.

With this interaction we first solve the Lippmann-Schwinger equation for the fully-off-
shell two-body t-matrix directly as function of vector variables as described in Ref. [21].
This t-matrix is then symmetrized to obtain ts(p

′, p, x, E − 3
4m
q2). The eigenvalue equation,

Eq. (2.10), for the three-body bound state is solved iteratively by a Lanczo’s type algorithm
described in detail in Ref. [4]. Using the 2BF alone, the binding energy of the three-body
system is calculated as E = 7.6986 MeV.

The simplest 3BF we want to apply in our study has the functional form

V4 =
1

(2π)6

aα

mα

g2
α

Fα(Q2)

Q2 +m2
α

Fα(Q′2)

Q′2 +m2
α

, (3.2)

where

Fα(Q2) =

(

Λ2
α −m2

α

Λ2
α +Q2

)2

. (3.3)

Choosing aα to be a negative constant makes this force purely attractive. The parameters
of this force, which we name MT3-I in the following, are given in Table II. They are chosen
to give a small attractive contribution to the three-body binding energy, such that we end
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up in the neighborhood of the triton binding energy. For the force parameters in Table II
we obtain E = 8.8732 MeV.

In order to solve the eigenvalue equation, Eq. (2.10), for the Faddeev component
ψ(p, q, x), we use Gaussian grid points in p, q, and x. The momentum and angle grids
in the integrations of the 3BF in Eqs. (2.23) and (2.27) have the same sizes as the ones for
p, q, and x. This is very reasonable, since the integrations over the meson exchange contri-
butions of the 3BF, Eq. (2.23), require grids similar in range to the one used to calculate
the two-body t-matrix. The p-grid is defined between 0 and pmax = 60fm−1, whereas for
the q-grid a maximum value qmax = 40fm−1 is sufficient. For the angle (x) integration, the
preferred number is 42 grid points. Further details concerning the grid choices are given in
Ref. [12]. Typical grid sizes are 97 × 97 × 42 to obtain an accuracy in the binding energy
of 5 significant figures. The convergence of the three-body binding energy E as function of
the number of grid points is shown in Table III, where we see a convergence of the energy
eigenvalue and the expectation values within 5 digits.

The three-body wave function is calculated from the Faddeev component using Eq. (2.29).
Since this wave function enters the eigenvalue equation, Eq. (2.10), we also need to worry
about the quality of the calculation of Ψ(p, q, x). One check of the overall quality of the
wave function is a comparison of the expectation value of the total Hamiltonian 〈H〉 with
the calculated value E from the solution of the Faddeev equation. Explicitly, we evaluate

〈H〉 ≡ 〈Ψ|H|Ψ〉 = 〈Ψ|H0|Ψ〉 + 〈Ψ|VII |Ψ〉 + 〈Ψ|V123|Ψ〉, (3.4)

where VII represents the 2BF
∑3

i=1 V
i and V123 the three-body defined in Eq. (2.2). The

expectation value of the kinetic energy 〈H0〉 and the two-body potential energy 〈VII〉 are
given as [12]

〈H0〉 ≡ 〈Ψ|H0|Ψ〉 = 3〈ψ|H0|Ψ〉

= 3 · 8π2
∫ ∞

0
p2dp

∫ ∞

0
q2dq

(

p2

m
+

3q2

4m

)

∫ +1

−1
dxψ(p, q, x)Ψ(p, q, x)

(3.5)

and

〈VII〉 ≡ 〈Ψ|VII |Ψ〉 = 3〈Ψ|V 1|Ψ〉

= 3 · 8π2
∫ ∞

0
p2dp

∫ ∞

0
q2dq

∫ +1

−1
dx
∫ ∞

0
p′2dp′

∫ +1

−1
dx′

× Ψ(p, q, x)v1(p, p
′, x, x′)Ψ(p′, q, x′) (3.6)

where

v1(p, p
′, x, x′) =

∫ 2π

0
dφV 1(p, p′, xx′ +

√
1 − x2

√
1 − x′2 cosφ). (3.7)

The expectation value of the three-body potential energy, 〈V123〉, is given by

〈V123〉 ≡ 〈Ψ|V123|Ψ〉 = 3〈Ψ|V4|Ψ〉

= 3 · 8π2
∫ ∞

0
p2dp

∫ ∞

0
q2dq

∫ +1

−1
dxΨ(p, q, x)V4Ψ(p, q, x). (3.8)
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Here the integrations need the evaluation of the matrix element 〈pq|V4|Ψ〉 of Eq. (2.14). The
expectation values of the kinetic and potential energies are listed in Table III as functions of
the size of the p−q−x grid. Table III shows that the expectation values given above converge
for 5 significant figures when the grid sizes for p and q exceed 77 points. However, Table III
also shows that the expectation value 〈H〉 does not exactly converge to the calculated value
E despite increased grid size. The difference between the two quantities is of the order
of 10 keV. This behavior is in contrast to calculations based solely on two-body forces.
Calculations with V123 = 0 are shown in Table IV as function of the size of the p − q − x
grid. Here the convergence of 〈H〉 to the calculated value E as function of the grid size is
much better than in the case where an attractive 3BF is included.

It is well known that three nucleon forces based on multi-meson exchanges can have
attractive as well as repulsive pieces. Thus we also consider a model of this type given as

V4 =
1

(2π)6

aα

mα

g2
α

Fα(Q2)

Q2 +m2
α

Fα(Q′2)

Q′2 +m2
α

+
1

(2π)6

aαρ√
mαmρ

gαgρ

(

Fα(Q2)

Q2 +m2
α

Fρ(Q
′2)

Q′2 +m2
ρ

+
Fρ(Q

′2)

Q′2 +m2
ρ

Fα(Q2)

Q2 +m2
α

)

. (3.9)

Here the first term represents an attractive force, characterized by a negative coupling aα,
whereas the second term represent a repulsive force, i.e. aαρ is positive. Since the masses of
the exchange mesons are different, the form of the second, repulsive term guarantees that
V4 is symmetric under a permutation of nucleons 2 and 3. The cutoff functions Fα and Fρ

have the same functional form as given in Eq. (3.3). The parameters of this 3BF, named
MT3-II in the following, are given in Table V. They are chosen so that the correction due
to this 3BF to the three-body binding energy calculated with the 2BF MT2-II is small. The
binding energy E with this MT3-II 3BF gives E = 8.6478 MeV.

The expectation values of the kinetic and potential energies are listed in Table VI as
functions of the size of the p − q − x grid. Again, the expectation values converge within
five significant figures when the grid sizes for p and q exceed 77 points. However, now the
difference of the expectation value for the total Hamiltonian 〈H〉 deviates from the calculated
eigenvalue E only by 5 keV, a number being similar to calculations carried out in a partial
wave decomposition and based on realistic forces [22].

All these numbers are not meant to provide insight into the physics of three interacting
nucleons, but serve only as a demonstration that this technique allows a very accurate and
easy handling of typical nuclear forces consisting of attractive and repulsive (short range)
parts. In addition, they will serve as benchmarks for future studies.

IV. WAVE FUNCTION PROPERTIES

Despite the fact that there is no spin dependence and questions about effects of realistic
forces can not be posed, we want to display some wave function properties, which are often
studied in the context of realistic forces. It will turn out that qualitatively they also appear
in our simple three boson model. The probability of finding a nucleon with momentum q in
the nucleus is given as
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n(q) = 2πq2
∫ ∞

0
dp p2

∫ +1

−1
dxΨ2(p, q, x). (4.1)

The total wave function Ψ(p, q, x) is given by Eq. (2.29). In Fig. 2 we show n(q) with and
without three-body forces. There is hardly any change, a fact with has been noticed before in
the context of realistic nuclear forces [22]. In addition, the shoulder of the distribution around
2-4 fm−1 is qualitatively similar to the case when using realistic forces. The momentum
distribution n(q) is shown in Fig. 2 for three different cases, one based on a calculation
with two-body forces alone (dotted line), and the other two for which the two different
3BFs are included. First we notice that the two 3BF’s, though different in character, lead
to essentially the same momentum distribution. Compared to the momentum distribution
given by the two-body force alone, the minimum is shifted to a slightly higher momentum.

Another property often investigated is the probability to find two nucleons at a distance
r. To obtain that quantity we generate the total wave function in configuration space as

Ψ(r,R) =
∫

d3p d3q Ψ(p,q) exp(ip · r) exp(iq · R). (4.2)

Here Ψ(p, q) is the total wave function in momentum space as given by Eq. (2.6). The
variables r and R are conjugate to the Jacobi momenta p, q and given as

r = x2 − x3,

R = x1 −
1

2
(x2 + x3). (4.3)

where x1, x2 and x3 are the coordinates of three nucleons in configuration space [16].
For the explicit calculation of the double Fourier transformation we first consider the

q-integration

∫

d3q exp(iq ·R)Ψ(p,q). (4.4)

We choose the vector p parallel to the z-axis and define the angles q̂ · ẑ = xq and R̂ · ẑ = xR.
Since the integration is carried out over all space, we can set φR = 0, and obtain

∫

d3q exp(iq · R)Ψ(p,q)

=
∫ ∞

0
q2dq

∫ +1

−1
dxq

∫ 2π

0
dφq exp(iqRR̂ · q̂)Ψ(p, q, xq), (4.5)

where

R̂ · q̂ = xqxR +
√

1 − x2
q

√

1 − x2
R cosφq. (4.6)

Thus, the integration over φq can be carried out separately

∫ 2π

0
dφq exp(iqR

√

1 − x2
q

√

1 − x2
R cosφq)

= 2πJ0(qR
√

1 − x2
q

√

1 − x2
R cosφq). (4.7)
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Summarizing the above leads to the intermediate result
∫

d3q exp(iq · R)Ψ(p,q)

= 2π
∫ ∞

0
q2dq

∫ +1

−1
dxqJ0(qR

√

1 − x2
q

√

1 − x2
R cosφq) exp(iqRxqxR)Ψ(p, q, xq)

≡ 2π Ψp(p, R, xR). (4.8)

Next, we consider the integration over p, where it is convenient to choose the vector r

parallel to the z-axis. Thus, the following angle, R̂ · ẑ ≡ R̂ · r̂ ≡ xR, needs to be considered,
and the integration over xp and φp can be carried out separately as

∫ +1

−1
dxp

∫ 2π

0
dφp exp(iprxp) = 4π

sin(pr)

pr
(4.9)

Finally, the Fourier transform of Ψ(p, q, p̂ · q̂) can be calculated as

Ψ(r, R, xR) =
8π2

r

∫ ∞

0
dp [sin(pr)pΨp(p, R, xR)] , (4.10)

where

Ψp(p, R, xR) =
∫ ∞

0
q2dq

∫ +1

−1
dxqJ0

(

qR
√

1 − x2
q

√

1 − x2
R

)

cos(qRxqxR)Ψ(p, q, xq). (4.11)

With this the two-body correlation function c(r) is defined as

c(r) = 2πr2
∫ ∞

0
dR R2

∫ +1

−1
dxRΨ2(r, R, xR). (4.12)

The correlation function c(r) describes the probability to find two nucleons within a relative
distance r. In Fig. 3 the correlation functions are displayed based on a calculation with two-
body forces (dotted line) and based on calculations with the two different 3BF’s. Though
our model is very simple, the functions c(r) are similar to the ones obtained with realistic
forces [22]. We see that the maximum of c(r) is shifted slightly to a smaller value of r once
a 3BF is included, which is consistent with the minimum of n(q) being shifted to a slightly
higher momentum. The position of the maximum of c(r) does not depend on the type of
3BF, however the actual shape of the function does.

Since our three-body system consists of three identical nucleons acted on by scalar forces,
the three nucleons form a ground state where the most probable positions of the nucleons
have the shape of an equilateral triangle. The expectation values of the Jacobi coordinates
r and R can be calculated as

〈r〉 =
∫ ∞

0
R2dR

∫ ∞

0
r2dr

∫ +1

−1
dxR rΨ2(r, R, xR),

〈R〉 =
∫ ∞

0
R2dR

∫ ∞

0
r2dr

∫ +1

−1
dxR RΨ2(r, R, xR). (4.13)

Here the values 〈r〉 and 〈R〉 are the length and height of the equilateral triangle. The
geometrical relation between the length and height of an equilateral triangle is given by
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〈r〉 : 〈R〉 = 2 :
√

3. (4.14)

We also define a deviation δ by

δ =
〈r〉/〈R〉 − 2/

√
3

2/
√

3
× 100. (4.15)

to account for deviations from an ideal geometric triangle. In Table VII we show the cor-
responding values for 〈r〉, 〈R〉, and δ for the MT2-II 2BF alone and the cases where the
two different 3BF discussed above are added. In all cases listed, the deviation from an ideal
equilateral triangle is 3% or less, also indicating that our calculations are very accurate.

We would like to add a little excursion into a playground with forces. Assume there
are only three-body forces. Can one generate a three-body wave function which has about
the same binding energy, single nucleon momentum distribution, and two-body correlation
function as given by two-body forces alone? This is indeed possible. For that aim we have
chosen purely attractive two- and three-body forces, the parameters of which are given in
Table VIII. The binding energies and expectation values of kinetic and potential energies
for the two cases are displayed in Table IX. It turns out that also n(q) and c(r) are close
to each other as shown in Figs. 3 and 4. We do not know of a physical realization of such
a scenario with pure three-body forces, but maybe the reader may find that little excursion
equally entertaining as we do.

V. SUMMARY AND OUTLOOK

We derived and calculated the Faddeev equation for three identical bosons interacting by
two- and three-body forces. The equation is formulated in momentum space directly in terms
of momentum vectors, i.e. without angular momentum decomposition. It is demonstrated
that this equation can be solved by integrating over magnitudes of momenta and various
angles. In doing so we encounter interpolations which are carried out by cubic Hermitian
splines [18]. The Faddeev equation is solved by iteration using a Lanczo’s type method [4,24].
An accuracy of 5 digits in the energy eigenvalue can easily be achieved. In comparison to an
angular momentum decomposition which is commonly used [16], this direct approach has
great advantages. It avoids the very involved angular momentum algebra occurring for the
permutations and especially for the three-body forces [17,18].

All two- and three-body forces we employ are of meson exchange type, either purely
attractive or attractive and repulsive. The mesons responsible for the attraction have masses
around 300 MeV , the ones for the repulsion around 600 MeV. These forces, serving as a
reference, are chosen with a view towards nuclear physics. Thus the reference two-body forces
lead to a three-body binding energy somewhat smaller than 8.48 MeV (the experimental 3H
binding energy), and the reference three-body forces add about 1 MeV additional binding
energy.

For these type of forces we evaluated the single nucleon momentum distributions and the
two-body correlation functions. These quantities turned out to be qualitatively very similar
to what is achieved with realistic spin dependent forces [22,23].

We also evaluated the expectation values 〈r〉 for a pair distance and 〈R〉 for the distance
of a third particle to the c.m. of the corresponding pair. In case of an equilateral triangle
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the ratio of these two quantities is 2/
√

3. Since we have three identical bosons the position
of the three particles in the ground state should be with highest probability at the corners
of an equilateral triangle. Indeed the corresponding ratio for the expectation values 〈r〉 and
〈R〉 turned out to be 2/

√
3 with an numerical error of about 1-2%.

Including spin (and isospin) degrees of freedom is an additional task for the future, which
will increase the space of states and will lead to coupled equations, but only a strictly finite
number of equations. The form in which they will appear will depend on the way the
spin degrees of freedom will be incorporated. One possibility will be the extension of the
helicity formalism chosen for the NN system in a three-dimensional notation [15] to three
nucleons. The other possible extension of the here presented formulation is the incorporation
of relativity in the instant form of dynamics [25]. The momentum space formulation seems
ideal for that. First steps have been already undertaken [26,27]. Since relativity will be of
importance at higher energies our treatment with momentum vectors and avoiding angular
momentum decomposition will be awarding in that respect.
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[7] A. Laverne, C. Gignoux, Nucl. Phys. A203, 597 (1973).
[8] J.L. Friar, B.F. Gibson, and G.L. Payne, Z. Phys. A 301, 309 (1981), C.R. Chen,

G.L. Payne, J.L. Friar, B.F. Gibson, Phys. Rev. C31, 2266 (1985).
[9] N.W. Schellingerhout, L.P. Kok, and G.D. Bosveld, Phys. Rev. A40, 5568 (1989);

N.W. Schellingerhout, J.J. Schut, and L.P. Kok, Phys. Rev. C46, 1192 (1992).
[10] Y. Wu, S. Ishikawa, T. Sasakawa, Few-Body Systems 15, 145 (1993).
[11] J. Carlson, Phys. Rev. C36, 2026 (1987), Phys. Rev. C38, 1879 (1988); J.G. Zabolitzki,

K.E. Schmidt, and M.H. Kalos, Phys. Rev. C25, 1111 (1982); J. Carlson and R. Schi-
avilla, Rev. Mod. Phys. 70, 743 (1998).

[12] Ch. Elster, W. Schadow, A. Nogga, and W. Glöckle, Few-Body System, 27, 83 (1998).
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[18] D. Hüber, H. Witala, A. Nogga, W. Glöckle and H. Kamada, Few-Body System, 22,

107 (1997).
[19] J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).
[20] Ch. Elster, E.E. Evans, H. Kamada and W. Glöckle, Few-Body System, 21, 25 (1996).
[21] Ch. Elster, J.H. Thomas, W. Glöckle, Few-Body Systems, 24, 55 (1998).
[22] A. Nogga, PhD Thesis, Ruhr-University Bochum, 2001.
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TABLES

TABLE I. The parameters of the MT2-II two-body force.

g2
A/4π mA[MeV] ΛA[MeV] g2

R/4π mR[MeV] ΛR[MeV]

3.5775 330.2104 1500.0 9.4086 612.4801 1500.0

TABLE II. The parameters of the MT3-I attractive 3BF.

g2
α/4π mα[MeV] Λα[MeV] aα

5.0 305.8593 1000.0 -1.73

TABLE III. The calculated eigenvalue E from the the solution of the Faddeev equation and

the expectation values of the kinetic energy 〈H0〉, the two-body potential 〈VII〉, the three-body

potential energy 〈V123〉 and the total Hamiltonian 〈H〉 as functions of the number of grid points

NP, NQ and NX for the p − q − x grid. The calculations are based on the MT2-II 2BF and the

MT3-I 3BF.

NP NQ NX 〈H0〉 (MeV) 〈VII〉 (MeV) 〈V123〉 (MeV) 〈H〉 (MeV) E (MeV)

45 45 42 31.8838 -39.4069 -1.3392 -8.8623 -8.8715

61 45 42 31.8846 -39.4073 -1.3396 -8.8623 -8.8711

77 45 42 31.8848 -39.4074 -1.3397 -8.8623 -8.8709

77 61 42 31.8900 -39.4133 -1.3406 -8.8639 -8.8726

77 77 42 31.8915 -39.4149 -1.3409 -8.8643 -8.8731

87 87 42 31.8919 -39.4152 -1.3410 -8.8644 -8.8732

97 97 42 31.8920 -39.4154 -1.3410 -8.8644 -8.8732

TABLE IV. The calculated eigenvalue E of the Faddeev equation and the expectation values of

the kinetic energy 〈H0〉, the two-body potential 〈VII〉, and the total Hamiltonian 〈H〉 as functions

of the number of grid points NP, NQ and NX for the p− q −x grid. The calculations are based on

the MT2-II 2BF alone.

NP NQ NX 〈H0〉 (MeV) 〈VII〉 (MeV) 〈H〉 (MeV) E (MeV)

77 77 42 28.6408 -36.3390 -7.6983 -7.6984

87 87 42 28.6408 -36.3391 -7.6983 -7.6984

97 97 42 28.6408 -36.3392 -7.6983 -7.6984

TABLE V. The parameters of the MT3-II 3BF.

g2
α/4π mα[MeV] Λα[MeV] aα

5.0 305.8593 1000.0 -2.69

g2
ρ/4π mρ[MeV] Λρ[MeV] aαρ

9.0 650.0000 1900.0 2.40
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TABLE VI. The calculated eigenvalue E from the the solution of the Faddeev equation and

the expectation values of the kinetic energy 〈H0〉, the two-body potential 〈VII〉, the three-body

potential energy 〈V123〉 and the total Hamiltonian 〈H〉 as functions of the number of grid points

NP, NQ and NX for the p − q − x grid. The calculations are based on the MT2-II 2BF and the

MT3-II 3BF.

NP NQ NX 〈H0〉 (MeV) 〈VII〉 (MeV) 〈V123〉 (MeV) 〈H〉 (MeV) E (MeV)

45 45 42 31.1745 -38.7859 -1.0404 -8.6518 -8.6454

61 45 42 31.1767 -38.7878 -1.0409 -8.6520 -8.6456

77 45 42 31.1773 -38.7881 -1.0413 -8.6521 -8.6466

77 61 42 31.1825 -38.7880 -1.0478 -8.6533 -8.6477

77 77 42 31.1837 -38.7886 -1.0481 -8.6530 -8.6480

87 87 42 31.1842 -38.7887 -1.0481 -8.6526 -8.6478

97 97 42 31.1847 -38.7892 -1.0481 -8.6526 -8.6478

TABLE VII. The binding energy E, the expectation values 〈r〉 and 〈R〉 calculated with the

MT2-II 2BF alone and with the addition of the two different 3BF’s described in the text. The

deviation δ characterizes the deviation from the shape of an equilateral triangle and is defined in

Eq. (4.15).

MT2-II MT2-II + MT3-I MT2-II + MT3-II

E (MeV) -7.6980 -8.873 -8.6478

〈r〉 (fm) 2.521 2.382 2.9401

〈R〉 (fm) 2.221 2.096 2.5945

δ (%) 1.7 1.6 1.9

TABLE VIII. The parameters of the purely attractive potentials, the 2BF MT2-I and the 3BF

MMT3-I leading to the same three-body binding energy.

MT2-I g2
A/4π mA[MeV] ΛA[MeV]

-0.7210 330.2104 1500

MMT3-I g2
α/4π mα[MeV] Λα[MeV] aα

5.0000 60.0 660 -1.90015

TABLE IX. The calculated eigenvalue E from the the solution of the Faddeev equation, the

expectation values of the kinetic energy 〈H0〉, and the potential energy 〈V 〉 for the two-body

force MT2-I and the three-body force MMT3-I. Both forces give similar binding energies. The

expectation values of 〈R〉 and 〈r〉 are also given for both cases.

Model 〈H0〉 (MeV) 〈V 〉 (MeV) 〈R〉 (fm) 〈r〉 (fm) E (MeV)

MT2-I 66.967 -74.547 1.592 1.783 -7.5803

MMT3-I 67.306 -74.895 1.521 1.698 -7.5504
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FIGURES

FIG. 1. Diagrammatic representation of the three-body force V
(1)
4 . Here particle (1) is singled

out by the meson-nucleon amplitude described by the blob. The three-body force is then given

according to Eq. (2.2).

FIG. 2. The momentum distributions n(q) calculated with the MT2-II two-body potential

(dotted line). The solid line represents the calculation of n(q) with the MT2-II two-body potential

and the MT3-I three-body potential, the dashed line the corresponding calculation with the MT3-II

three body potential.

FIG. 3. The two-body correlation function c(r) calculated with the MT2-II two-body potential

(dotted line). The solid line represents the calculation of c(r) with the MT2-II two-body potential

and the MT3-I three-body potential, the dashed line the corresponding calculation with the MT3-II

three body potential.

FIG. 4. The momentum distributions n(q) calculated with the attractive 2BF MT2-I (solid

line). The dashed curve represents the calculation with the purely attractive 3BF, where the

parameters are chosen such that the binding energy and the momentum distribution are similar to

the one given by the MT2-I potential.

FIG. 5. The two-body correlation function c(r) calculated with the attractive 2BF MT2-I (solid

line). The dashed curve represents the calculation with the purely attractive 3BF as used in Fig. 4
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Fig.3
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