1,600 research outputs found

    Rifts in Spreading Wax Layers

    Full text link
    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.Comment: 4 pages, Postscript fil

    Cosmological Surrealism: More than ``Eternal Reality" is Needed

    Full text link
    Inflationary Cosmology makes the universe ``eternal" and provides for recurrent universe creation, ad infinitum -- making it also plausible to assume that ``our" Big Bang was also preceeded by others, etc.. However, GR tells us that in the ``parent" universe's reference frame, the newborn universe's expansion will never start. Our picture of ``reality" in spacetime has to be enlarged.Comment: 7 pages, TAUP N23

    Robust Inference of Trees

    Full text link
    This paper is concerned with the reliable inference of optimal tree-approximations to the dependency structure of an unknown distribution generating data. The traditional approach to the problem measures the dependency strength between random variables by the index called mutual information. In this paper reliability is achieved by Walley's imprecise Dirichlet model, which generalizes Bayesian learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in posterior interval expectation for mutual information, and in a set of plausible trees consistent with the data. Reliable inference about the actual tree is achieved by focusing on the substructure common to all the plausible trees. We develop an exact algorithm that infers the substructure in time O(m^4), m being the number of random variables. The new algorithm is applied to a set of data sampled from a known distribution. The method is shown to reliably infer edges of the actual tree even when the data are very scarce, unlike the traditional approach. Finally, we provide lower and upper credibility limits for mutual information under the imprecise Dirichlet model. These enable the previous developments to be extended to a full inferential method for trees.Comment: 26 pages, 7 figure

    Negaton and Positon Solutions of the KDV Equation

    Full text link
    We give a systematic classification and a detailed discussion of the structure, motion and scattering of the recently discovered negaton and positon solutions of the Korteweg-de Vries equation. There are two distinct types of negaton solutions which we label [Sn][S^{n}] and [Cn][C^{n}], where (n+1)(n+1) is the order of the Wronskian used in the derivation. For negatons, the number of singularities and zeros is finite and they show very interesting time dependence. The general motion is in the positive xx direction, except for certain negatons which exhibit one oscillation around the origin. In contrast, there is just one type of positon solution, which we label [C~n][\tilde C^n]. For positons, one gets a finite number of singularities for nn odd, but an infinite number for even values of nn. The general motion of positons is in the negative xx direction with periodic oscillations. Negatons and positons retain their identities in a scattering process and their phase shifts are discussed. We obtain a simple explanation of all phase shifts by generalizing the notions of ``mass" and ``center of mass" to singular solutions. Finally, it is shown that negaton and positon solutions of the KdV equation can be used to obtain corresponding new solutions of the modified KdV equation.Comment: 20 pages plus 12 figures(available from authors on request),Latex fil

    Nucleating Black Holes via Non-Orientable Instantons

    Get PDF
    We extend the analysis of black hole pair creation to include non- orientable instantons. We classify these instantons in terms of their fundamental symmetries and orientations. Many of these instantons admit the pin structure which corresponds to the fermions actually observed in nature, and so the natural objection that these manifolds do not admit spin structure may not be relevant. Furthermore, we analyse the thermodynamical properties of non-orientable black holes and find that in the non-extreme case, there are interesting modifications of the usual formulae for temperature and entropy.Comment: 27 pages LaTeX, minor typos are correcte

    Balancing Minimum Spanning and Shortest Path Trees

    Full text link
    This paper give a simple linear-time algorithm that, given a weighted digraph, finds a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous trade-off: given the two trees and epsilon > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1+epsilon times the shortest-path distance, and yet the total weight of the tree is at most 1+2/epsilon times the weight of a minimum spanning tree. This is the best tradeoff possible. The paper also describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993

    On the formation of black holes in non-symmetric gravity

    Get PDF
    It has been recently suggested that the Non-symmetric Gravitational Theory (NGT) is free of black holes. Here, we study the linear version of NGT. We find that even with spherical symmetry the skew part of the metric is generally non-static. In addition, if the skew field is initially regular, it will remain regular everywhere and, in particular, at the horizon. Therefore, in the fully-nonlinear theory, if the initial skew-field is sufficiently small, the formation of a black hole is to be anticipated.Comment: 9 pages, ordinary LaTex

    The physical meaning of the "boost-rotation symmetric" solutions within the general interpretation of Einstein's theory of gravitation

    Full text link
    The answer to the question, what physical meaning should be attributed to the so-called boost-rotation symmetric exact solutions to the field equations of general relativity, is provided within the general interpretation scheme for the ``theories of relativity'', based on group theoretical arguments, and set forth by Erich Kretschmann already in the year 1917.Comment: 9 pages, 1 figure; text to appear in General Relativity and Gravitatio

    Non-integrability of the mixmaster universe

    Full text link
    We comment on an analysis by Contopoulos et al. which demonstrates that the governing six-dimensional Einstein equations for the mixmaster space-time metric pass the ARS or reduced Painlev\'{e} test. We note that this is the case irrespective of the value, II, of the generating Hamiltonian which is a constant of motion. For I<0I < 0 we find numerous closed orbits with two unstable eigenvalues strongly indicating that there cannot exist two additional first integrals apart from the Hamiltonian and thus that the system, at least for this case, is very likely not integrable. In addition, we present numerical evidence that the average Lyapunov exponent nevertheless vanishes. The model is thus a very interesting example of a Hamiltonian dynamical system, which is likely non-integrable yet passes the reduced Painlev\'{e} test.Comment: 11 pages LaTeX in J.Phys.A style (ioplppt.sty) + 6 PostScript figures compressed and uuencoded with uufiles. Revised version to appear in J Phys.

    Black Holes in Modified Gravity (MOG)

    Get PDF
    The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass MM with two horizons. The strength of the gravitational constant is G=GN(1+α)G=G_N(1+\alpha) where α\alpha is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass MM, the parameter α\alpha and the spin angular momentum J=MaJ=Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published version in European Physics Journal
    • …
    corecore