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Abstract
It has been recently suggested that the Non-symmetricGravitational The-

ory (NGT) is free of black holes. Here, we study the linear version of NGT.

We �nd that even with spherical symmetry the skew part of the metric is
generally non-static. In addition, if the skew �eld is initially regular, it will
remain regular everywhere and, in particular, at the horizon. Therefore, in
the fully-nonlinear theory, if the initial skew-�eld is su�ciently small, the
formation of a black hole is to be anticipated.
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General Relativity (GR) is a theory of gravitation, in which gravity is

manifested by the curvature of spacetime, which is described by Riemannian

geometry [1]. Field theories which use non-Riemannian geometry have been

formulated by Einstein [2], Schr�odinger [3], Einstein and Straus [4], and

more recently by Mo�at [5, 6] and Klotz [7]. In non-Riemannian geometry

the metric tensor g�� is not assumed to be symmetrical in its two indices.

This property complicates the geometry considerably, and induces torsion

in spacetime. Einstein [2] formulated a non-symmetric �eld theory as part

of his quest for a Uni�ed Field Theory, namely, a uni�ed theory of classical

gravity and electromagnetism.

Recently, there has been growing interest in Non-symmetric Gravitation

Theory (NGT) for motivations di�erent than Einstein's. Cornish and Mo�at

(CM) [8, 9] studied a class of exact static spherically-symmetric solutions to

the NGT �eld equations. This class depends on the two parameters m and

s, where m is the source's mass, and s determines the strength of the skew

part of the metric tensor (that is, at large distance, r � m, this skew part

is proportional to s). In all these solutions, there are no trapped surfaces,

and consequently there are no black holes. Based on these static solutions,
CM suggested that NGT was free of black holes (and, thereof, of spacetime
singularities) [8, 9, 10].

It is remarkable that even for arbitrarily small s, the static skew �eld
\destroys" the horizon. That is, even if the skew �eld (i.e., the skew part
of the metric tensor) is arbitrarily small at r � m, in the static solution
it grows in an uncontrolled way on the approach to r = 2m { until it be-
comes so strong that it modi�es the geometry dramatically and prevents the

formation of trapped surfaces. This behavior is nicely demonstrated in the
context of linearized NGT. In linearized NGT, the skew �eld is regarded
as an in�nitesimally-small perturbation over the standard, symmetric met-
ric. The linear analogue of the model analyzed by CM is that of a static,
spherically-symmetric, linearized skew �eld on a Schwarzschild background.
One then �nds (see below) that the linearized skew �eld diverges at r = 2m.

This linear divergence indicates the e�ectiveness of the skew �eld, and its
ability to \destroy" the black hole, in the context of fully non-linear NGT.

Of course, before making any de�nitive statements about the existence

or non-existence of black holes in NGT, one must address the following ques-
tion: Is the above mentioned phenomenon (the absence of a black hole in the

static spherically-symmetric solutions) a generic characteristic of NGT, or a
result of the symmetry (staticity) imposed? Answering this question requires

an investigation of the nature of the generic dynamical NGT solutions. This
is an extremely hard task, because NGT is much more complicated than GR

(and, of course, its general dynamic solution is as yet unknown). Fortunately,

it is possible to translate the above question to the context of linearized NGT:

Is the divergence of the linearized skew �eld at the Schwarzschild radius a
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generic feature of linearized NGT, or a consequence of the assumption of

staticity (of the skew �eld)? If the generic linearized solution were divergent

at the background's horizon, an important dynamical e�ect would be antici-

pated in the fully-nonlinear NGT. On the other hand, if the linearized skew

�eld is found to be generically regular at the horizon, the situation is dif-

ferent: Then (at least for su�ciently-small initial skew �eld), the linearized

solution is likely to be a good approximation to the full theory, and no dras-

tic e�ects are expected to occur at the horizon. In such a case, we should

expect a gravitational collapse to proceed pretty much like in GR { and, in

particular, a formation of a black hole is to be anticipated.

The goal of this Letter is to address the above question. We shall study

the dynamical behavior of a linearized skew �eld on a GR background and

apply this formalism to spherically-symmetric skew �eld on Schwarzschild.

We shall show that the linearized equation possesses a well-posed initial-

value formulation. An important result is that, even in spherical symmetry,

the skew �eld need not be static. Moreover, for regular initial data on some

spacelike hypersurface �, no divergence occurs anywhere in the entire domain

of dependence. In particular, the dynamics of the skew �eld at the horizon
is perfectly regular. Our conclusion is, therefore, that if the initial skew �eld
is su�ciently small, a black hole is likely to form in gravitational collapse {

just like in standard GR.
The vacuum �eld equations of NGT are:

g��;� � g���
�
�� � g���

�
�� = 0; (1)�p�gg[��]�
;�
= 0; (2)

R(��) = 0; (3)

R[��]; +R[�];� +R[�];� = 0; (4)

where g�� is the non-symmetric metric tensor, g is its determinant,R�� is the
generalized Ricci tensor [see Eq. (8) below], and ��

� is the non-symmetric
a�ne connection. The inverse metric g�� is de�ned by g��g�� = g��g�� = ���.

We now consider the linearized NGT. Namely, we assume that the skew
part of the metric tensor, h�� , is a small perturbation over the symmetric
GR metric, and develop the �eld equation to �rst order in this perturbation.

Denoting all background �elds by an overhat, we write g�� � ĝ�� + h�� ,

��
�� � �̂�

�� +D�
�� , and R�� � R̂�� +Q��. Here, ĝ�� is a standard, symmetric

GR metric, and �̂�
�� and R̂�� are the standard connection and Ricci tensor,

respectively, associated with this background metric. Note the symmetry
features of the various entities: By de�nition, we have ĝ(��) = ĝ�� , �̂

�

(��) =

�̂�
�� , R̂(��) = R̂��, and h[��] = h�� . We shall show below that D�

[�] = D�
�

and Q[��] = Q��. The background metric ĝ�� is taken to be vacuum, i.e.,

R̂�� = 0.
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From the metricity equation (1) we �nd, to the linear order in the skew

�eld, that

ĝ��D
�
� + ĝ��D

�
� = h��;; (5)

where a semicolon denotes covariant di�erentiation with respect to the GR

background ĝ�� . Solving Eq. (5) we �nd that

D�
� = D�

[�] =
1

2
ĝ�� (h�;� + h��; + h�;�) : (6)

Next, we linearize Eq. (2). To linear order we have g[��] = �h�� . (We use

the background metric ĝ�� to raise or lower indices.) Eq. (2) is thus reduced

to

h
��
;� = h

��
;� = 0: (7)

The generalized (Hermitianized) Ricci tensor is de�ned in NGT by [2]

R�� = ��
��;� �

1

2

�
��

(��);� + ��

(��);�

�
� ��

���
�
�� + ��

���
�
(��): (8)

Expanding this equation to the �rst order in the perturbation, we �nd that

Q�� = Q[��] = D
�
��;�; (9)

or, equivalently,

Q� =
1

2
ĝ�� (h�;�� + h��;� + h�;��) : (10)

Recalling the non-commutivity of covariant derivatives, we re-write Eq.

(10) as

Q� =
1

2
ĝ��

�
h��R̂

�

�� + h�R̂
�

��� + h��R̂
�

�� + h��R̂
�

��

�
+

1

2

�
h�;�� + h �

� ;� + ĝ��h�;��
�
: (11)

where R̂�

�� is the background Riemann curvature tensor. In view of R̂�� = 0

and Eq. (7), Eq. (11) becomes

Q� =
1

2
ĝ��h�;�� + 2ĝ��h��R̂

�
��: (12)

Linearizing Eqs. (3) and (4), one �nds that the former is automatically

satis�ed by Q�, and Eq. (4) reduces to

Q��; +Q�;� +Q�;� = 0: (13)
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Equation (13) [with the identity (12)], together with the constraint (7), are

the linearized vacuum NGT equations for h�� .

Our analysis so far was quite generic: We did not make any assumptions

about any symmetry of either ĝ�� or h�� . We shall now restrict attention to

spherical symmetry. Namely, we shall take ĝ�� to be Schwarzschild, and h��
to be spherically-symmetric. We start from the spherically-symmetric metric

used by CM (see, e.g., Eq. (5) in Ref. [8]), and allow the three non-trivial

metric functions { namely, � ,  and f { to depend on both r and t:

g�� =

0
BBB@

(r; t) 0 0 0

0 ��(r; t) 0 0

0 0 �r2 f(r; t) sin �

0 0 �f(r; t) sin � �r2 sin2 �

1
CCCA : (14)

(The most general spherically-symmetric metric may also include a nonzero

metric function g[rt] [11]. Here, we follow CM and restrict attention to the

simpler case, g[rt] = 0.) We now linearize the �eld equations in f . The zeroth-

order equation R̂�� = 0 immediately implies that the background metric is
the Schwarzschild solution:  = 1=� = 1�2m=r, so we only need to calculate
f . Equation (7) is automatically satis�ed by the skew part of (14), and we
only need to consider Eq. (13). A straightforward calculation, based on Eq.
(12), yields that the only non-vanishing components of Q�� are

Q�� = �Q�� =

"
1

2

 
�f


� f 00

�

!
+

f 0

�r
+

1

2

f 0�0

�2
� 2

f�0

�2r

#
sin �; (15)

where a dot and a prime denote partial di�erentiation with respect to t

and r, correspondingly. [We have also derived this equation directly, by
calculating R�� from the (time-dependent) metric (14) in the fully nonlinear
NGT, and then linearizing it in f .] From Eq. (13) it is obvious that Q��

cannot depend on r or t. The most general solution of this equation is,

therefore, Q�� = �c sin �, where c is some real constant (see also Ref. [12]).
It can be shown, however, that for c 6= 0 the spacetime is not asymptotically-
Minkowski [13]. We shall therefore focus attention here on the case c = 0.
The �eld equation for f will thus be

1

2

 
�f


� f 00

�

!
+

f 0

�r
+

1

2

f 0�0

�2
� 2

f�0

�2r
= 0: (16)

In the static limit, i.e., when _f is taken to vanish, we recover from Eq. (16)
the linear analogue of the CM equation for f (see, in particular, Eq. (2.4)
of Ref. [14]). One can easily verify that, in the static limit, the linearized

f diverges logarithmically at r = 2m. This is just the linear analogue of

the behavior found by CM. Here, however, we are in a position to study the

dynamical content of the theory.
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Equation (16) is a linear, second-order, hyperbolic, partial di�erential

equation, and consequently it possesses a well-posed initial-value formula-

tion. Thus, given f and _f on some spacelike surface, standard theorems

guarantee the existence and uniqueness of a regular solution f(r; t) through-

out the domain of dependence (or, more precisely, as long as the background

metric tensor is regular). This, by itself, proves that f does not satisfy a gen-

eralized Birkho�'s theorem [15]. Namely, despite the spherical symmetry, f

is generically dynamic (for, one is allowed to chose nonzero initial _f).

The next stage of our analysis is to study the behavior of f at the horizon.

The Schwarzschild co-ordinates are unsuitable for that purpose as they go

singular at r = 2m. We therefore need to transform to some other spherical

co-ordinates (e.g., Kruskal-Szekeres [16]). This transformation is most easily

done by expressing Eq. (16) in a covariant form. De�ning a new function

k(r; t) � f(r; t)=r2, one readily �nds that Eq. (16) reduces to

ĝ��k;�� +
2

r2
k = 0: (17)

Take now any co-ordinates that cover the Schwarzschild manifold (such
as Kruskal-Szekeres), and re-express Eq. (17) in terms of partial derivatives.
The resultant equation is obviously a linear, second-order, hyperbolic, partial
di�erential equation { throughout the spacetime (with coe�cients which are
regular everywhere). Therefore, for any partial Cauchy surface � in the

analytically-extended Schwarzschild spacetime, and for any choice of regular
k (or f) and its time-derivative on it, the existence and uniqueness of a regular
solution k(r; t) [or f(r; t)] throughout D+(�) is guaranteed. In particular, f
is regular at the horizon.

We have found that if the linearized skew function f is initially regular,

it will remain regular throughout the domain of dependence (except possibly
at r = 0) and, in particular, at the event horizon. Note that there is no
conict between this result and the divergence of the static linearized skew
�eld at r = 2m. From the initial-value point of view, the linearized static
solution fails to be regular at r = 2m simply because it evolved from singular

initial data. (That is, in view of the staticity, the divergence at r = 2m must
have been existed already on the initial slice.) For any regular initial data,
however, the skew �eld will remain regular at the horizon.

Let us now discuss the implication of the above results to nonlinear NGT.

Generally, one expects a linear perturbation analysis to be a good approxi-

mation to the original nonlinear theory as long as the perturbation is small.
If, however, the linearized perturbation develops a divergence at some point,

this may break the validity of the linear approximation. Indeed, the di-
vergence of the static linearized skew �eld at the horizon indicates strong

nonlinear e�ects, which completely modify the GR geometry (at r � 2m).
We have found, however, that if the initial data for the linear case are regu-

lar, no divergence will occur. We therefore arrive at the following conclusion
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regarding the behavior of the fully-nonlinear system: If the skew function f

and its time derivative are regular and su�ciently small at the initial mo-

ment, they are likely to remain small, and dynamically-unimportant, in the

neighborhood of r = 2m. In particular, a black hole is expected to form {

pretty much like in GR.1 Again, there is no conict between this result and

the strong nonlinear e�ect found by CM in the static case, because in the

latter the initial skew �eld is necessarily strong near r = 2m.

Strictly speaking, the above considerations are restricted to the vacuum

case, i.e., to the analytically-extended Schwarzschild spacetime. One may

therefore be concerned about the validity of our conclusion to the situation of

gravitational collapse (in spherically-symmetric gravitational collapse matter

must always be involved). The present authors regard this as a technical

di�culty, rather than an inherent one. Although our regularity arguments

are not strictly valid in the presence of matter, in view of the above analysis

there is no positive indication whatsoever for any anomalous behavior of the

skew �eld at the horizon (given regular and su�ciently small initial data).

In addition, let us imagine a non-spherical GR background ĝ�� describing

a dynamical gravitational collapse of pure gravitational radiation (which in
GR produces a black hole [17]). Consider now a small (linearized) skew
perturbation h�� over this background. (We assume that the initial data for

the skew �eld are given on an initial hypersurface prior to the formation of
the black hole.) The vacuum �eld equations are certainly valid in that case.
Although our above initial-value analysis is restricted to spherical symmetry,
it is possible to extend it to the generic (non-spherical) case. [18] This general
analysis is beyond the scope of the present Letter, so we shall just outline

it briey. In the generic case, one can introduce a \vector-potential" A�

(A� is closely related to the vector W� of Ref. [5]), such that Q�� = A[�;�].
[This automatically solves Eq. (13).] Using the Lorentz gauge, A�

;� = 0, one
can derive a system of second-order linear hyperbolic di�erential equations
for A� and h�� , which is consistent with the constraint equations [i.e., with
Eq. (7) and A�

;� = 0]. Doing so, we again obtain a well-posed intial-value

formulation for the generic evolution of the linearized non-symmetric �eld.
One can now repeat the above arguments and arrive at a similar conclusion
{ this time, applied to the formation of a non-spherical black hole by the

collapse of pure gravitational radiation: If the initial skew �eld is su�ciently
small, no important dynamical e�ects are expected to occur on the approach

to the event (or apparent) horizon. Therefore, a black hole is expected to
form, as in GR.

If, indeed, a black hole forms in NGT, what would then be its �nal state?
The equation satis�ed by k [Eq. (17)] is nothing but the radial equation for

the l = 1 mode of a massless scalar �eld. Consequently, from the analysis of

Price [19], an external observer will witness an inverse power-law decay (in

1Important dynamical e�ects are possible, however, near r = 0.
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the external time t) of the skew �eld, with a usual GR black hole as the �nal

state.2
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