76 research outputs found

    Partitioning of turbulent flux reveals contrasting cooling potential for woody vegetation and grassland during heat waves

    Full text link
    © 2015 Royal Meteorological Society. We compared the capacity of woody versus grassy vegetation covers to buffer high temperatures during heat waves by partitioning turbulent heat between latent (λE) and sensible (H) fluxes, and quantifying advection using the Priestley-Taylor coefficient (α), for a16-year old grassland and an adjoining 6-year old plantation. We found that because λE dominated (>65%) the turbulent flux in the plantation and was at least twice as large as on the grassland (λE35°). Annual evapotranspiration was 54% lower from the grassland (384 mm) than from the plantation (834 mm). Woody vegetation covers dominated by broadleaved species are therefore preferred for buffering extreme high temperatures during heat waves and recommended for rehabilitating degraded landscapes in urban areas. We also present functions for approximating α for soil water limited conditions

    Circular bioeconomy potential and challenges within an African context: From theory to practice

    Get PDF
    A circular bioeconomy has the potential to minimize the environmental impacts of biowaste while simultaneously generating value-added bioproducts and bioenergy. Currently, most countries of the African Union lack well-defined policies, requisite infrastructure, and expertise for biowaste valorisation, thus limiting the potential development of the region. Against this background, it is necessary to deploy circular bioeconomy principles based on the awareness of the biocapacity of territories through the nexus of biowaste management and life cycle thinking. In the present study, a preliminary assessment of waste management practices in a tourist hotel in Victoria Falls in Zimbabwe is explored. The hotel produces about 3.26 tons per month of biowaste, which is often improperly disposed in non-engineered waste dumps. Furthermore, the disposal options for 1 tonne of biowaste are explored using City of Harare (CoH) as a case study. The preliminary results show composting as the most environmentally favourable option (9.6 kg CO2 eq), followed by anaerobic digestion (56.4 kg CO2 eq), and finally, biowaste incineration (140 kg CO2 eq). Anaerobic digestion and composting remain the most viable biowaste disposal alternatives in Africa, due to limited expenses and expertise for construction, operation, and maintenance. However, both technologies remain under-utilized, hence, a significant portion of the source-separated biowaste is still disposed of in waste dumps and this reflects the lack of supportive institutional, regulatory and policy frameworks. Overall, these early results point to the potential to develop a circular bioeconomy in Africa, while calling for shared responsibilities among the state, market, and civil society actors to develop and adopt appropriate institutional, regulatory, policy and funding models

    Effects of Acacia seyal and biochar on soil properties and sorghum yield in agroforestry systems in South Sudan

    Get PDF
    We studied the effects of Acacia seyal Del. intercropping and biochar soil amendment on soil physico-chemical properties and sorghum (Sorghum bicolor L.) yields in a two-year field experiment conducted on a silt loam site near Renk in South Sudan. A split-plot design with three replications was used. The main factor was tree-cropping system (dense acacia + sorghum, scattered acacia + sorghum, and sole sorghum) and biochar (0 and 10 Mg ha(-1)) was the subplot factor. The two acacia systems had lower soil pH, N and higher C/N ratios compared to the sole sorghum system. Biochar significantly increased soil C, exchangeable K+ contents, field capacity and available water content, but reduced soil exchangeable Ca2+ and effective CEC, and had no effect on soil pH. Acacia intercropping significantly reduced sorghum grain yields while biochar had no significant effect on sorghum yields. The land equivalent ratio (LER) for sorghum yield was 0.3 for both acacia systems in 2011, with or without biochar, but increased in 2012 to 0.6 for the scattered acacia system when combined with biochar. The reduction in sorghum yields by the A. seyal trees was probably due to a combination of competition for water and nutrients and shading. The lack of a yield response to biochar maybe due to insufficient time or too low a dosage. Further research is needed to test for the effects of tree intercropping and biochar and their interactions on soil properties and crop yields in drylands.Peer reviewe

    Biochar: pyrogenic carbon for agricultural use: a critical review.

    Get PDF
    O biocarvão (biomassa carbonizada para uso agrícola) tem sido usado como condicionador do solo em todo o mundo, e essa tecnologia é de especial interesse para o Brasil, uma vez que tanto a ?inspiração?, que veio das Terras Pretas de Índios da Amazônia, como o fato de o Brasil ser o maior produtor mundial de carvão vegetal, com a geração de importante quantidade de resíduos na forma de finos de carvão e diversas biomassas residuais, principalmente da agroindústria, como bagaço de cana, resíduos das indústrias de madeira, papel e celulose, biocombustíveis, lodo de esgoto etc. Na última década, diversos estudos com biocarvão têm sido realizados e atualmente uma vasta literatura e excelentes revisões estão disponíveis. Objetivou-se aqui não fazer uma revisão bibliográfica exaustiva, mas sim uma revisão crítica para apontar alguns destaques na pesquisa sobre biochar. Para isso, foram selecionados alguns temaschave considerados críticos e relevantes e fez-se um ?condensado? da literatura pertinente, mais para orientar as pesquisas e tendências do que um mero olhar para o passad

    Transpiration And Plant Water Relations Of Evergreen Woody Vegetation On A Recently Constructed Artificial Ecosystem Under Seasonally Dry Conditions In Western Australia

    Full text link
    Understanding transpiration and plant physiological responses to environmental conditions is crucial for the design and management of vegetated engineered covers. Engineered covers rely on sustained transpiration to reduce the risk of deep drainage int

    Estimating Tree Crown Area and Aboveground Biomass in Miombo Woodlands From High-Resolution RGB-Only Imagery

    Get PDF
    Quantification of tree canopy area and aboveground biomass is essential for monitoring ecosystems' ecological functionalities, e.g., carbon sequestration and habitat provision. Miombo woodlands are vastly existent in developing countries that often lack resources to acquire LiDAR data or high spatiospectral resolution remote sensing data that have been proven to accurately estimate these structural attributes. This study explored the utility of freely available (via Google Maps) high (1-m) resolution red, green, and blue (RGB) satellite imagery in combination with object-based image analysis (OBIA) for estimating tree canopy area and aboveground biomass in Miombo woodlands. We randomly established 41 225-m 2 plots in Mukuvisi Woodland, Zimbabwe, and used RGB data with OBIA to estimate tree canopy area in those plots. We also field measured the height, canopy area, and trunk diameter at breast height of all trees that fell in those plots, then used the field data and a published allometric equation to estimate aboveground tree biomass (AGB). OBIA classification accuracy was high (Jaccard similarity index = 0.96). Data analysis showed significant positive linear relationship between AGB and field-measured canopy area (R 2 = 0.87, p <; 0.003), and significant exponential relationships between: 1) OBIA-derived canopy area and AGB (R 2 = 0.56, p <; 0.0001); and 2) field-measured canopy area and OBIA-derived canopy area (R 2 = 0.63, p <; 0.0001), and no significant differences (t = 19.67, df = 78, p = 0.28) between field-measured canopy area (×̅ = 187.11 m 2 , σ = 127.03) and OBIA-derived canopy area (×̅ = 163.00 m 2 , σ = 50.08). We conclude that RGB data with OBIA are suitable for estimating tree canopy area in Miombo woodlands for various low-accuracy purposes (e.g., biomass estimation)

    Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands

    No full text
    Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales
    corecore