1,583 research outputs found
Different forms of the bovine PrP gene have five or six copies of a short, G-C-rich element within the protein-coding exon
Current models of the virus-like agents of scrapie and bovine spongiform encephalopathy (BSE) have to take into account that structural changes in a host-encoded protein (PrP protein) exhibit an effect on the time course of these diseases and the survival time of any man or animal exposed to these pathogens. We report here the sequence of different forms of the bovine PrP gene which contain either five or six copies of a short, G-C-rich element which encodes the octapeptide Pro-His-Gly-Gly-Gly-Trp-Gly-Gln or its longer variants Pro-Gln/His-Gly-Gly-Gly-Gly-Trp-Gly-Gln. Out of 12 cattle, we found eight animals homozygous for genes with six copies of the Gly-rich peptide (6:6), while four were heterozygous (6:5). Two confirmed cases of BSE occurred in (6: 6) homozygous animals. Bovine spongiform encephalopathy (BSE) is a transmissible disease (Fraser et al., 1988; Dawson et al., 1990; Barlow & Middleton, 1990) which produces neuropathological lesions in cattle similar to those seen in ovine scrapie (Wells et al., 1987) and the rare human dementias Creutzfeldt-Jakob disease (CJD) and Gerstmann-Str/iussler syndrome (GSS) (Beck & Daniel, 1987). A cellular membrane protein (PrP) has a key role in the transmission and development of these diseases. This protein accumulates in the brain and other tissues during the protracted time course of these diseases and, in a disease-specific, protease-resistant isoform (SAF-PrP), has been purified by subcellular fractionation of scrapie
Significant differences in incubation times in sheep infected with bovine spongiform encephalopathy result from variation at codon 141 in the PRNP gene
The susceptibility of sheep to prion infection is linked to variation in the PRNP gene, which
encodes the prion protein. Common polymorphisms occur at codons 136, 154 and 171. Sheep
which are homozygous for the A<sub>136</sub>R<sub>154</sub>Q<sub>171</sub> allele are the most susceptible to bovine spongiform
encephalopathy (BSE). The effect of other polymorphisms on BSE susceptibility is unknown. We
orally infected ARQ/ARQ Cheviot sheep with equal amounts of BSE brain homogenate and a
range of incubation periods was observed. When we segregated sheep according to the amino
acid (L or F) encoded at codon 141 of the PRNP gene, the shortest incubation period was
observed in LL141 sheep, whilst incubation periods in FF<sub>141</sub> and LF<sub>141</sub> sheep were significantly
longer. No statistically significant differences existed in the expression of total prion protein or the
disease-associated isoform in BSE-infected sheep within each genotype subgroup. This
suggested that the amino acid encoded at codon 141 probably affects incubation times through
direct effects on protein misfolding rates
Coarsening in surface growth models without slope selection
We study conserved models of crystal growth in one dimension [] which are linearly unstable and develop a mound
structure whose typical size L increases in time (). If the local
slope () increases indefinitely, depends on the exponent
characterizing the large behaviour of the surface current (): for and for
.Comment: 7 pages, 2 EPS figures. To be published in J. Phys. A (Letter to the
Editor
Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene
The density of trap states in the bandgap of semiconducting organic single
crystals has been measured quantitatively and with high energy resolution by
means of the experimental method of temperature-dependent
space-charge-limited-current spectroscopy (TD-SCLC). This spectroscopy has been
applied to study bulk rubrene single crystals, which are shown by this
technique to be of high chemical and structural quality. A density of deep trap
states as low as ~ 10^{15} cm^{-3} is measured in the purest crystals, and the
exponentially varying shallow trap density near the band edge could be
identified (1 decade in the density of states per ~25 meV). Furthermore, we
have induced and spectroscopically identified an oxygen related sharp hole bulk
trap state at 0.27 eV above the valence band.Comment: published in Phys. Rev. B, high quality figures:
http://www.cpfs.mpg.de/~krellner
High prevalence of scrapie in a dairy goat herd: tissue distribution of disease-associated PrP and effect of PRNP genotype and age
Following a severe outbreak of clinical scrapie in 2006–2007, a
large dairy goat herd was culled
and 200 animals were selected for post-mortem examinations in order to
ascertain the prevalence of infection,
the effect of age, breed and PRNP genotype on the susceptibility to scrapie,
the tissue distribution of diseaseassociated
PrP (PrP), and the comparative efficiency of different diagnostic methods.
As determined by immunohistochemical (IHC) examinations with Bar224 PrP antibody, the
prevalence of preclinical infection
was very high (72/200; 36.0%), with most infected animals being positive
for PrP in lymphoreticular system
(LRS) tissues (68/72; 94.4%) compared to those that were positive in
brain samples (38/72; 52.8%). The
retropharyngeal lymph node and the palatine tonsil showed the highest
frequency of PrP accumulation (87.3%
and 84.5%, respectively), while the recto-anal mucosa-associated lymphoid
tissue (RAMALT) was positive in
only 30 (41.7%) of the infected goats. However, the efficiency of rectal
and palatine tonsil biopsies taken
shortly before necropsy was similar. The probability of brain and RAMALT
being positive directly
correlated with the spread of PrP within the LRS. The prevalence of
infection was influenced by PRNP
genetics at codon 142 and by the age of the goats: methionine carriers older
than 60 months showed a much
lower prevalence of infection (12/78; 15.4%) than those younger than 60 months (20/42; 47.6%); these last
showed prevalence values similar to isoleucine homozygotes of any age
(40/80; 50.0%). Two of seven goats
with definite signs of scrapie were negative for PrP in brain but positive
in LRS tissues, and one goat showed
biochemical and IHC features of PrP different from all other infected
goats. The results of this study have
implications for surveillance and control policies for scrapie in goats
Hole dynamics in noble metals
We present a detailed analysis of hole dynamics in noble metals (Cu and Au),
by means of first-principles many-body calculations. While holes in a
free-electron gas are known to live shorter than electrons with the same
excitation energy, our results indicate that d-holes in noble metals exhibit
longer inelastic lifetimes than excited sp-electrons, in agreement with
experiment. The density of states available for d-hole decay is larger than
that for the decay of excited electrons; however, the small overlap between d-
and sp-states below the Fermi level increases the d-hole lifetime. The impact
of d-hole dynamics on electron-hole correlation effects, which are of relevance
in the analysis of time-resolved two-photon photoemission experiments, is also
addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let
Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel
We measure the band structure of nickel along various high-symmetry lines of
the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The
Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters
are obtained from non-magnetic density-functional theory resolves most of the
long-standing discrepancies between experiment and theory on nickel. Thereby we
support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl
Lifetime of d-holes at Cu surfaces: Theory and experiment
We have investigated the hole dynamics at copper surfaces by high-resolution
angle-resolved photoemission experiments and many-body quasiparticle GW
calculations. Large deviations from a free-electron-like picture are observed
both in the magnitude and the energy dependence of the lifetimes, with a clear
indication that holes exhibit longer lifetimes than electrons with the same
excitation energy. Our calculations show that the small overlap of d- and
sp-states below the Fermi level is responsible for the observed enhancement.
Although there is qualitative good agreement of our theoretical predictions and
the measured lifetimes, there still exist some discrepancies pointing to the
need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.
Wigner Crystalline Edges in nu < 1 Quantum Dots
We investigate the edge reconstruction phenomenon believed to occur in
quantum dots in the quantum Hall regime when the filling fraction is nu < 1.
Our approach involves the examination of large dots (< 40 electrons) using a
partial diagonalization technique in which the occupancies of the deep interior
orbitals are frozen. To interpret the results of this calculation, we evaluate
the overlap between the diagonalized ground state and a set of trial
wavefunctions which we call projected necklace (PN) states. A PN state is
simply the angular momentum projection of a maximum density droplet surrounded
by a ring of localized electrons. Our calculations reveal that PN states have
up to 99% overlap with the diagonalized ground states, and are lower in energy
than the states identified in Chamon and Wen's study of the edge
reconstruction.Comment: 8 pages, 8 figures, to be published in Phys. Rev.
- …
