281 research outputs found

    Vacancy diffusion in the Cu(001) surface II: Random walk theory

    Get PDF
    We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(001) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.Comment: 13 pages, 4 figure

    Visualization of steps and surface reconstructions in Helium Ion Microscopy with atomic precision

    Get PDF
    Helium Ion Microscopy is known for its surface sensitivity and high lateral resolution. Here, we present results of a Helium Ion Microscopy based investigation of a surface confined alloy of Ag on Pt(111). Based on a change of the work function of 25\,meV across the atomically flat terraces we can distinguish Pt rich from Pt poor areas and visualize the single atomic layer high steps between the terraces. Furthermore, dechanneling contrast has been utilized to measure the periodicity of the hcp/fcc pattern formed in the 2--3 layers thick Ag/Pt alloy film. A periodicity of 6.65\,nm along the ⟨11‾2⟩\langle\overline{11}2\rangle surface direction has been measured. In terms of crystallography a hcp domain is obtained through a lateral displacement of a part of the outermost layer by 1/31/\sqrt{3} of a nearest neighbour spacing along ⟨11‾2⟩\langle\overline{11}2\rangle. This periodicity is measured with atomic precision: coincidence between the Ag and the Pt lattices is observed for 23 Ag atoms on 24 Pt atoms. The findings are perfectly in line with results obtained with Low Energy Electron Microscopy and Phase Contrast Atomic Force Microscopy.Comment: 15 pages, 7 figure

    Nothing moves a surface: vacancy mediated surface diffusion

    Get PDF
    We report scanning tunneling microscopy observations, which imply that all atoms in a close-packed copper surface move frequently, even at room temperature. Using a low density of embedded indium `tracer' atoms, we visualize the diffusive motion of surface atoms. Surprisingly, the indium atoms seem to make concerted, long jumps. Responsible for this motion is an ultra-low density of surface vacancies, diffusing rapidly within the surface. This interpretation is supported by a detailed analysis of the displacement distribution of the indium atoms, which reveals a shape characteristic for the vacancy mediated diffusion mechanism that we propose.Comment: 4 pages; for associated movie, see http://www-lion.leidenuniv.nl/sections/cm/groups/interface/projects/therm

    Diffusion in a surface: the atomic slide puzzle

    Full text link

    Vacancy diffusion in the Cu(001) surface I: Random walk theory

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Nothing moves a surface: vacancy mediated surface diffusion

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
    • …
    corecore