577 research outputs found
Dark/Visible Parallel Universes and Big Bang Nucleosynthesis
We develop a model for visible matter-dark matter interaction based on the
exchange of a massive gray boson called herein the Mulato. Our model hinges on
the assumption that all known particles in the visible matter have their
counterparts in the dark matter. We postulate six families of particles five of
which are dark. This leads to the unavoidable postulation of six parallel
worlds, the visible one and five invisible worlds. A close study of big bang
nucleosynthesis (BBN), baryon asymmetries, cosmic microwave background (CMB)
bounds, galaxy dynamics, together with the Standard Model assumptions, help us
to set a limit on the mass and width of the new gauge boson. Modification of
the statistics underlying the kinetic energy distribution of particles during
the BBN is also discussed. The changes in reaction rates during the BBN due to
a departure from the Debye-Hueckel electron screening model is also
investigated.Comment: Invited talk at the Workshops "CompStar: the physics and astrophysics
of compact stars", Tahiti, June 4-8, 2012, "New Directions in Nuclear
Astrophysics", Castiglion Fiorentino, Italy, June 18-22, 2012, and
"Carpathian Summer School of Physics", Sinaia, Romania, June 24 - July 7,
2012. To be published in AIP Proceeding
Precursors To and Pathways Through Conversion: Catalytic Experiences of Born Again Christian College Students
Born again Christians are a significant religious population in the United States, and throughout the world. The process by which a born again identity is assumed is not clearly described in the research literature. Therefore, we asked 18 born again Christian college students a series of questions designed to uncover what led to their identity of being born again. Responses fell into three overarching themes. First, participants described exposure within relationships to God’s principles. Second, participants noted the influence of introspection and reflection on their lives apart from the influence of God. Third, participants had an active response in which they reported such things as recognizing conviction by the Holy Spirit, that they decided to act on that conviction, and that they took action to follow Jesus. Findings are discussed within the framework of Cohen and Hill’s (2007) theory of religion as culture
Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function
This work was supported by grants from the NIH (R01CA86072 to R.G.P. and R01CA72038-01 to S.A.W.F.) and The Susan Komen Breast Cancer Foundation (to R.G.P.). R.T.H. and E.J. were supported by the Medical Research Council. Y.-G.Y. is supported by grant CA26504 to E. R. Stanley. Work conducted at the Albert Einstein College of Medicine was supported by Cancer Center Core National Institutes of Health grant 5-P30-CA13330-26.The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both traits repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-kappaS, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.Publisher PDFPeer reviewe
Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life
Citation: Sung, W., Ackerman, M. S., Dillon, M. M., Platt, T. G., Fuqua, C., Cooper, V. S., & Lynch, M. (2016). Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life. G3-Genes Genomes Genetics, 6(8), 2583-2591. doi:10.1534/g3.116.030890/-/DC1Mutations are the ultimate source of variation used for evolutionary adaptation, while also being predominantly deleterious and a source of genetic disorders. Understanding the rate of insertion-deletion mutations (indels) is essential to understanding evolutionary processes, especially in coding regions, where such mutations can disrupt production of essential proteins. Using direct estimates of indel rates from 14 phylogenetically diverse eukaryotic and bacterial species, along with measures of standing variation in such species, we obtain results that imply an inverse relationship of mutation rate and effective population size. These results, which corroborate earlier observations on the base-substitution mutation rate, appear most compatible with the hypothesis that natural selection reduces mutation rates per effective genome to the point at which the power of random genetic drift (approximated by the inverse of effective population size) becomes overwhelming. Given the substantial differences in DNA metabolism pathways that give rise to these two types of mutations, this consistency of results raises the possibility that refinement of other molecular and cellular traits may be inversely related to species-specific levels of random genetic drift
Association of INT2/HST1 coamplification in primary breast cancer with hormone-dependent phenotype and poor prognosis.
The human proto-oncogene INT2 (homologous to the mouse INT2 gene, implicated in proviral induced mammary carcinoma) has been mapped to chromosome 11q13 and found to share band localisation with, among others, the HST1 proto-oncogene. Both genes are members of the fibroblast growth factor family. In the present study, coamplification (2-15 copies) of the INT2/HST1 genes was found in 27 (9%) of 311 invasive human breast carcinomas using slot blot and Southern blot analyses. Amplification was not correlated to tumour size, axillary lymph node status or stage of disease, neither to patient age nor menopausal status. However, 26 (96%) of the 27 amplified tumours were, often strongly, Oestrogen receptor positive compared to 65% of the unamplified cases (P = 0.001). These findings are in sharp contrast to the strong correlations of HER-2/neu proto-oncogene amplification with advanced stage and steroid receptor negativity, previously observed in the same series of tumours. Patients with INT2/HST1 amplified breast cancer had a significantly shorter disease-free survival compared to those with unamplified genes (P = 0.015, median follow up 45 months). This correlation was confined to node-negative patients and persisted in multivariate analysis. No significant correlation to survival from breast cancer was found. It is concluded that amplification of the 11q13 region in breast cancer occurs in a particular subset of aggressive tumours, quite different from that identified by HER-2/neu amplification. It still remains to be shown that the selection for amplified genes at 11q13 is due to the activity of INT2, HST1 or yet another, still unidentified, neighbouring gene. However, the results are potentially of clinical value in separating a group of node-negative breast cancer for more intense treatment
Elevated Expression of MAPK Phosphatase 3 in Breast Tumors—A Mechanism of Tamoxifen Resistance
Antiestrogen resistance is a major clinical problem in the treatment of breast cancer. Altered growth factor signaling with estrogen receptor (ER) α has been shown to be associated with the development of resistance. Gene expression profiling was utilized to identify MAPK phosphatase 3 (MKP3) whose expression was correlated with response to the antiestrogen tamoxifen in both patients and in vitro derived cell line models. Overexpression of MKP3 rendered ERα-positive breast cancer cells resistant to the growth inhibitory effects of tamoxifen, and enhanced tamoxifen agonist activity in endometrial cells. MKP3 overexpression was associated with lower levels of activated ERK1,2 phosphorylation in the presence of estrogen, but that estrogen deprivation and tamoxifen treatment decreased MKP3 phosphatase activity, leading to an up-regulation of pERK1,2 MAPK, phosphoserine 118 of ERα, and cyclin D1. The MEK inhibitor PD98059 blocked tamoxifen-resistant growth. Accumulation of reactive oxygen species was observed with tamoxifen treatment of MKP3 overexpressing cells, and antioxidant treatment increased MKP3 phosphatase activity, thereby blocking resistance. Furthermore, PD98059 increased the levels of phospho-JNK in tamoxifen-treated MKP3 overexpressing cells, suggesting an interaction between MKP3 levels, activation of ERK1,2 MAPK, and JNK signaling in human breast cancer cells. MKP3 represents a novel mechanism of resistance which may be a potential biomarker for the use of ERK1,2 and/or JNK inhibitors in combination with tamoxifen treatment
Regulatory function of the P295-T311 motif of the estrogen receptor α - does proteasomal degradation of the receptor induce emergence of peptides implicated in estrogenic responses?
The way in which estrogen receptor α (ERα) mediates gene transcription and hormone-dependent cancer cell proliferation is now being largely reconsidered in view of several recent discoveries. ERα-mediated transcription appears to be a cyclic and transient process where the proteasome - and thus receptor degradation - plays a pivotal role. In view of our recent investigations, which demonstrate the estrogenic activity of a synthetic peptide corresponding to a regulatory motif of the receptor (ERα17p), we propose that ERα proteasomal degradation could induce the emergence of regulatory peptide(s). The latter would function as a signal and contribute to the ERα activation process, amplifying the initial hormonal stimulation and giving rise to sustained estrogenic response
RNA sequencing of cancer reveals novel splicing alterations
Breast cancer transcriptome acquires a myriad of regulation changes, and splicing is critical for the cell to “tailor-make” specific functional transcripts. We systematically revealed splicing signatures of the three most common types of breast tumors using RNA sequencing: TNBC, non-TNBC and HER2-positive breast cancer. We discovered subtype specific differentially spliced genes and splice isoforms not previously recognized in human transcriptome. Further, we showed that exon skip and intron retention are predominant splice events in breast cancer. In addition, we found that differential expression of primary transcripts and promoter switching are significantly deregulated in breast cancer compared to normal breast. We validated the presence of novel hybrid isoforms of critical molecules like CDK4, LARP1, ADD3, and PHLPP2. Our study provides the first comprehensive portrait of transcriptional and splicing signatures specific to breast cancer sub-types, as well as previously unknown transcripts that prompt the need for complete annotation of tissue and disease specific transcriptome
- …