13,038 research outputs found
Bus voltage compensation circuit for controlling direct current motor
Automatic control of voltage supply to direct current moto
Deuteron spin-lattice relaxation times in undercooled aqueous potassium- and cesium halide solutions
Abstract
Aqueous emulsions of potassium-and cesium halides in cycloalkane mixtures can be undercooled at a pressure of 225 MPa to temperatures around 170K. In these emulsions deuterium spin-lattice relaxation times T1 have been determined as function of salt concentration, temperature and pressure at magnetic fields of 2.4 Tesla and 7.0 Tesla. The frequency and temperature dependence of the relaxation time curves is described quantitatively within a motional model which is consistent with known local structural features in these solutions. Model parameters deduced are compared with those obtained in related studies of the other alkali-halides, and conclusions are drawn regarding the influence of structure and composition on molecular motions. </jats:p
Cutting Edge RFID Technologies for NASA Applications
This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID
Development of an improved surface preparation for titanium bonding and titanium graphite laminates for aircraft and space vehicle applications
Eddy current damper
A high torque capacity eddy current damper used as a rate limiting device for a large solar array deployment mechanism is discussed. The eddy current damper eliminates the problems associated with the outgassing or leaking of damping fluids. It also provides performance advantages such as damping torque rates, which are truly linear with respect to input speed, continuous 360 degree operation in both directions of rotation, wide operating temperature range, and the capability of convenient adjustment of damping rates by the user without disassembly or special tools
Angiotensin converting enzyme in human seminal plasma is synthesized by the testis, epididymis and prostate
Absolute flux measurements for swift atoms
While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube
Data compression and regression based on local principal curves.
Frequently the predictor space of a multivariate regression problem of the type y = m(x_1, …, x_p ) + ε is intrinsically one-dimensional, or at least of far lower dimension than p. Usual modeling attempts such as the additive model y = m_1(x_1) + … + m_p (x_p ) + ε, which try to reduce the complexity of the regression problem by making additional structural assumptions, are then inefficient as they ignore the inherent structure of the predictor space and involve complicated model and variable selection stages. In a fundamentally different approach, one may consider first approximating the predictor space by a (usually nonlinear) curve passing through it, and then regressing the response only against the one-dimensional projections onto this curve. This entails the reduction from a p- to a one-dimensional regression problem.
As a tool for the compression of the predictor space we apply local principal curves. Taking things on from the results presented in Einbeck et al. (Classification – The Ubiquitous Challenge. Springer, Heidelberg, 2005, pp. 256–263), we show how local principal curves can be parametrized and how the projections are obtained. The regression step can then be carried out using any nonparametric smoother. We illustrate the technique using data from the physical sciences
- …
