3,343 research outputs found

    Guidelines for composite materials research related to general aviation aircraft

    Get PDF
    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design

    Results of winglet development studies for DC-10 derivatives

    Get PDF
    The results of investigations into the application of winglets to the DC-10 aircraft are presented. The DC-10 winglet configuration was developed and its cruise performance determined in a previous investigation. This study included high speed and low speed wind tunnel tests to evaluate aerodynamic characteristics, and a subsonic flutter wind tunnel test with accompanying analysis and evaluation of results. Additionally, a configuration integration study employed the results of the wind tunnel studies to determine the overall impact of the installation of winglets on the DC-10 aircraft. Conclusions derived from the high speed and low speed tests indicate that the winglets had no significant effects on the DC-10 stability characteristics or high speed buffet. It was determined that winglets had a minimal effect on aircraft lift characteristics and improved the low speed aircraft drag under high lift conditions. The winglets affected the DC-10 flutter characteristics by reducing the flutter speed of the basic critical mode and introducing a new critical mode involving outer wing torsion and longitudinal bending. The overall impact of winglets was determined to be of sufficient benefit to merit flight evaluation

    Effects of Aspect Ratio on Air Flow at High Subsonic Mach Numbers

    Get PDF
    Schlieren photographs were used in an investigation to determine the effects of changing the aspect ratio from infinity to 2 on the air flow past a wing at high subsonic Mach numbers. The results indicated that the decreased effects of compressibility on drag coefficients for the finite wing are produced by a reduction in the compression shock and flow separation

    Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    Get PDF
    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented

    Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates

    Get PDF
    Indium gallium nitride (In(x)Ga(1-x)N) is a technologically important material for many optoelectronic devices, including LEDs and solar cells, but it remains a challenge to incorporate high levels of InN into the alloy while maintaining sample quality. A series of InGaN epilayers was grown with different hydrogen flow rates (0-200 sccm) and growth temperatures (680-750 °C) to obtain various InN fractions and bright emission in the range 390-480 nm. These 160-nm thick epilayers were characterized through several compositional techniques (wavelength dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectrometry) and cathodoluminescence hyperspectral imaging. The compositional analysis with the different techniques shows good agreement when taking into account compositional gradients evidenced in these layers. The addition of small amounts of hydrogen to the gas flow at lower growth temperatures is shown to maintain a high surface quality and luminescence homogeneity. This allowed InN fractions of up to ~16% to be incorporated with minimal peak energy variations over a mapped area while keeping a high material quality

    Non-crystallographic reduction of generalized Calogero-Moser models

    Get PDF
    We apply a recently introduced reduction procedure based on the embedding of non-crystallographic Coxeter groups into crystallographic ones to Calogero–Moser systems. For rational potentials the familiar generalized Calogero Hamiltonian is recovered. For the Hamiltonians of trigonometric, hyperbolic and elliptic types, we obtain novel integrable dynamical systems with a second potential term which is rescaled by the golden ratio. We explicitly show for the simplest of these non-crystallographic models, how the corresponding classical equations of motion can be derived from a Lie algebraic Lax pair based on the larger, crystallographic Coxeter group

    Matching Spherical Dust Solutions to Construct Cosmological Models

    Full text link
    Conditions for smooth cosmological models are set out and applied to inhomogeneous spherically symmetric models constructed by matching together different Lemaitre-Tolman-Bondi solutions to the Einstein field equations. As an illustration the methods are applied to a collapsing dust sphere in a curved background. This describes a region which expands and then collapses to form a black hole in an Einstein de Sitter background. We show that in all such models if there is no vacuum region then the singularity must go on accreting matter for an infinite LTB time.Comment: 13 pages, Revtex; to appear Gen. Rel. Gra

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated
    corecore