5,798 research outputs found

    Microwave attenuation and brightness temperature due to the gaseous atmosphere: A comparison of JPL and CCIR values

    Get PDF
    A sophisticated but flexible radiative transfer program designed to assure internal consistency was used to produce brightness temperature (sky noise temperature in a given direction) and gaseous attenuation curves. The curves, derived from atmospheric models, were compared and a new set was derived for a specified frequency range

    Some developments in improved methods for the measurements of the spectral irradiances of solar simulators

    Get PDF
    Measurement of spectral emission from solar simulators - photoelectric photometr

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm−210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the eta Chamaeleontis cluster

    Get PDF
    The formation of planets is directly linked to the evolution of the circumstellar (CS) disk from which they are born. The dissipation timescales of CS disks are, therefore, of direct astrophysical importance in evaluating the time available for planet formation. We employ Spitzer Space Telescope spectra to complete the CS disk census for the late-type members of the ~8 Myr-old eta Chamaeleontis star cluster. Of the 15 K- and M-type members, eight show excess emission. We find that the presence of a CS disk is anti-correlated with binarity, with all but one disk associated with single stars. With nine single stars in total, about 80% retain a CS disk. Of the six known or suspected close binaries the only CS disk is associated with the primary of RECX 9. No circumbinary disks have been detected. We also find that stars with disks are slow rotators with surface values of specific angular momentum j = 2-15 j_sun. All high specific angular momentum systems with j = 20-30 j_sun are confined to the primary stars of binaries. This provides novel empirical evidence for rotational disk locking and again demonstrates the much shorter disk lifetimes in close binary systems compared to single star systems. We estimate the characteristic mean disk dissipation timescale to be ~5 Myr and ~9 Myr for the binary and single star systems, respectively.Comment: Accepted by ApJ

    Properties of Extruded PS-212 Type Self-Lubricating Materials

    Get PDF
    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent

    Nitric Oxide Production as an Indication of \u3ci\u3eMycobacterium Bovis \u3c/i\u3eInfection in White-Tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e)

    Get PDF
    White-tailed deer ( Odocoileus virginianus ) are reservoirs for Mycobacterium bovis in northeast Michigan, USA. Production of nitric oxide (NO) by activated macrophages is a potent mechanism of mycobacterial killing. The capacity of macrophages to produce NO, however, varies among mammalian species. The objective of this study was to determine if mononuclear cells from white-tailed deer produce nitrite as an indication of NO production and, if so, is NO produced in response to stimulation with M. bovis antigens. Supernatants were harvested from adherent peripheral blood mononuclear cell (PBMC) cultures that had been stimulated with either Mannheimia haemolytica lipopolysaccharide (LPS) or media alone (i.e., no stimulation). Nitrite levels within M. haemolytica LPS-stimulated culture supernatants exceeded (P \u3c 0.05) those detected within supernatants from non-stimulated cultures as well as those detected within supernatants from cultures receiving an inhibitor of NO synthase in addition to M. haemolytica LPS. In response to stimulation with M. bovis antigens, nitrite production by PBMC from M. bovis -infected deer exceeded (P \u3c 0.05) the production by PBMC from non-infected deer. The response of PBMC from infected deer to M. bovis antigens exceeded (P \u3c 0.05) the response of parallel cultures from the same deer receiving no stimulation. The response of PBMC from M. bovis -infected deer to M. avium antigens did not differ from that of PBMC from M. bovis infected deer to no stimulation or from that of PBMC from non-infected deer to M. avium antigens. These findings indicate that adherent PBMC from white-tailed deer are capable of NO production and that mononuclear cells isolated from M. bovis -infected white-tailed deer produce NO in an antigen-specific recall response
    • …
    corecore