4,255 research outputs found

    A contribution to the chemical pathology of the lipoids

    Get PDF
    From the biological, and especially medical, point of view no class of substances has in recent years grown so rapidly in importance as the lipoide. The purely chemical investigation of these substances has been carried on by numerous observers since the middle of last Century, but it is only during the last twenty years, and especially the last ten, that any great progress has been made. At the present day we know thoroughly the constitution of several important lipoide and we are able, in a general way, to make a reasonable classification of those which are less well known.Mayer and Overton's theory of narcosis, the explanation of the pharmacology of many drugs, and the numerous physiological theories dependant upon the physics of a cell membrane have all helped to increase the importance of a thorough knowledge of the lipoide in physiology, and have stimulated numerous researches, but the role played by these substances in pathological processes remains almost uninvestigated

    Radiometric responsivity determination for Feature Identification and Location Experiment (FILE) flown on space shuttle mission

    Get PDF
    A procedure was developed to obtain the radiometric (radiance) responsivity of the Feature Identification and Local Experiment (FILE) instrument in preparation for its flight on Space Shuttle Mission 41-G (November 1984). This instrument was designed to obtain Earth feature radiance data in spectral bands centered at 0.65 and 0.85 microns, along with corroborative color and color-infrared photographs, and to collect data to evaluate a technique for in-orbit autonomous classification of the Earth's primary features. The calibration process incorporated both solar radiance measurements and radiative transfer model predictions in estimating expected radiance inputs to the FILE on the Shuttle. The measured data are compared with the model predictions, and the differences observed are discussed. Application of the calibration procedure to the FILE over an 18-month period indicated a constant responsivity characteristic. This report documents the calibration procedure and the associated radiometric measurements and predictions that were part of the instrument preparation for flight

    Bostonia. Volume 11

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Polyethylene Oxide Nanofiber Production by Electrospinning

    Get PDF
    Electrospinning is an inexpensive technique that is used to produce nanofibers for a variety of applications. In electrospinning, a polymer solution is dispensed from a hypodermic-like syringe where an intense electric field attracts the solution to a collector while drawing the polymer into a very thin fiber. The diameter of the fiber can be controlled by tuning the process parameters such as the applied electric field, solution flow rate, distance between syringe tip and collector, and the collector geometry. In this paper we describe results from electrospinning poly(ethylene oxide) (PEO), a likely candidate for applications involving scaffolding for tissue engineering. The PEO nanofibers were fabricated from different polymer solution concentrations ranging from 14% - 22% (by weight). Each sample was then imaged using a scanning electron microscope. The morphology of the fibers produced from varying solution concentrations is discussed

    Redefining the Missing Satellites Problem

    Full text link
    Numerical simulations of Milky-Way size Cold Dark Matter (CDM) halos predict a steeply rising mass function of small dark matter subhalos and a substructure count that greatly outnumbers the observed satellites of the Milky Way. Several proposed explanations exist, but detailed comparison between theory and observation in terms of the maximum circular velocity (Vmax) of the subhalos is hampered by the fact that Vmax for satellite halos is poorly constrained. We present comprehensive mass models for the well-known Milky Way dwarf satellites, and derive likelihood functions to show that their masses within 0.6 kpc (M_0.6) are strongly constrained by the present data. We show that the M_0.6 mass function of luminous satellite halos is flat between ~ 10^7 and 10^8 M_\odot. We use the ``Via Lactea'' N-body simulation to show that the M_0.6 mass function of CDM subhalos is steeply rising over this range. We rule out the hypothesis that the 11 well-known satellites of the Milky Way are hosted by the 11 most massive subhalos. We show that models where the brightest satellites correspond to the earliest forming subhalos or the most massive accreted objects both reproduce the observed mass function. A similar analysis with the newly-discovered dwarf satellites will further test these scenarios and provide powerful constraints on the CDM small-scale power spectrum and warm dark matter models.Comment: 8 pages, 6 figure

    Eutectic Colony Formation: A Stability Analysis

    Full text link
    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as `eutectic colonies'. We extend the stability analysis of Datye and Langer for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, non-trivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes; references adde

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Rescaling multipartite entanglement measures for mixed states

    Full text link
    A relevant problem regarding entanglement measures is the following: Given an arbitrary mixed state, how does a measure for multipartite entanglement change if general local operations are applied to the state? This question is nontrivial as the normalization of the states has to be taken into account. Here we answer it for pure-state entanglement measures which are invariant under determinant 1 local operations and homogeneous in the state coefficients, and their convex-roof extension which quantifies mixed-state entanglement. Our analysis allows to enlarge the set of mixed states for which these important measures can be calculated exactly. In particular, our results hint at a distinguished role of entanglement measures which have homogeneous degree 2 in the state coefficients.Comment: Published version plus one important reference (Ref. [39]

    An Electrochemical Study of Frustrated Lewis Pairs: A Metal-free Route to Hydrogen Oxidation

    Get PDF
    [Image: see text] Frustrated Lewis pairs have found many applications in the heterolytic activation of H(2) and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H(2) can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H(2) oxidation by 610 mV (117.7 kJ mol(–1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology

    BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization

    Full text link
    BICEP3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of BICEP1, BICEP2 and the Keck Array experiments - it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, BICEP3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5×\times larger than a BICEP2/Keck Array receiver and faster optics (f/1.6f/1.6 vs. f/2.4f/2.4). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, BICEP3 will have survey speed comparable to Keck Array 150 GHz (2013), and will significantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the BICEP2 observation patch.Comment: 12 pages, 5 figures. Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proceedings of SPIE Volume 915
    corecore